
EWD

Using the Sencha Touch Custom Tags for Mobile Applications

Tutorial: Part 3
Build 852

Background

This is the third part of our tutorial on mobile web application development using
Enterprise Web Developer (EWD)’s Sencha Touch Custom Tags.

It is recommended that you complete (or at least read) Parts 1 and 2 before embarking on
the exercises in this third part of the tutorial.

In Part 1, we covered the basics of creating mobile web applications using EWD and
Sencha Touch, and touched on how EWD integrates seamlessly with the Cache and
GT.M databases.

In Part 2 we looked at the List and TabPanel widgets.

In this part we’ll look at styling text, modal/pop-up panels and forms. We’ll also
examine in more detail the underlying architecture of EWD and in particular what’s
behind EWD’s persistent Sessions.

Note that for Part 3 you’ll need build 852 or later of EWD, as some of the features and
techniques described in this tutorial have been added since the builds originally released
for Parts 1 and 2.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

1

Lesson 10: Styling Text within Sencha Touch panels

By the end of Lesson 9 in Part 2, we were able to display a List of EWD’s DOM APIs,
and when one was tapped, a new panel – apiDetails.ewd – would slide into view,
providing further information about the API.

The styling of the text that was displayed in the apiDetails panel was very basic, and in
this lesson we’ll look at a few EWD-specific styling tags that have been provided to give
a nice look at feel to the presentation of such text.

The main styling tag is the <st:pageItem> tag. This will create a rectangular area with
rounded corners in which your markup can be displayed. Let’s modify apiDetails.ewd to
use it.

To begin with, simply place our text markup inside an instance of an <st:pageItem> tag,
and add a title attribute to it, for example:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getAPIDetails^stdemo">

<st:panel id="apiDetails">

 <st:pageItem title="API Details">
 <div>
 API: <?= #apiName ?>
 </div>

 <div>
 Purpose: <?= #apiPurpose ?>
 </div>
 </st:pageItem>

</st:panel>

Save this file, recompile and rerun the application. Select an API and you should now
see our textual information nicely displayed as follows:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

2

You can turn off the default panel shadowing by simply adding the attribute
shadow=”false”:

 <st:pageItem title="API Details" shadow=”false”>
 <div>
 API: <?= #apiName ?>
 </div>

 <div>
 Purpose: <?= #apiPurpose ?>
 </div>
 </st:pageItem>

You can also add a heading to the panel:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

3

 <st:pageItem title="EWD DOM" header=”API Details”>
 <div>
 API: <?= #apiName ?>
 </div>

 <div>
 Purpose: <?= #apiPurpose ?>
 </div>
 </st:pageItem>

The apiDetails panel will now look like this:

We can further enhance the display by using <st:pageItemField> tags for the API and
Purpose values instead of the raw <div> tags that we originally used:

 <st:pageItem title="EWD DOM" header=”API Details”>
 <st:pageItemField label="API: " value="#apiName" />
 <st:pageItemField label="Purpose: " value="#apiPurpose" />
 </st:pageItem>

Now the apiDetails panel will look like this:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

4

We can make one final enhancement, and allocate a width for the label:

<st:pageItem title="EWD DOM" header="API Details" labelWidth="75">

 <st:pageItemField label="API: " value="#apiName" />
 <st:pageItemField label="Purpose: " value="#apiPurpose" />

 </st:pageItem>

The apiDetails panel now looks as follows:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

5

You can have as many <st:pageItemField> tags as you like inside a single
<st:pageItem> tag, and an <st:panel> tag can contain as many <st:pageItem> tags as
you want. You can even next <st:pageItem> tags inside each other: try it and see what
happens!

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

6

Lesson 11: Modal Panels

Another way of presenting information to the user is to use modal pop-up panels. Sencha
Touch makes this really easy to do and the appearance is very slick.

A very common use of pop-up panels in mobile applications is in association with toolbar
buttons. Clicking a button can trigger the appearance of a modal panel, and you can even
get the panel to line itself up visually with the button the panel is associated with. You’ll
see this visual effect used a lot in iPad applications. You can now do the same thing
using EWD and Sencha Touch.

So let’s try it out. What we’re going to do is to first add an “About” button that will be
always visible on the right hand side of the top toolbar. To do this, edit the tabPanel.ewd
page:

<ewd:config isFirstPage="false" pageType="ajax" prePageScript="getAPIList^stdemo">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo">
 <st:toolbarButton type="autoback" id="listBackBtn" text="Back" hidden="true" />
 <st:spacer />
 <st:toolbarButton id="aboutBtn" text="About" />
 </st:toolbar>

 <st:tabPanel id="mainTabPanel">
 <st:panel id="helloworld" title="Hello" page="helloworld" />

 <st:panel id="example2" title="List" layout="card">

 <st:list scroll="vertical" id="apiList" sessionName="listOfAPIs" nextPage="apiDetails"
cardpanel="example2">
 <st:layout>
 <st:field name="optionText" displayInList="true"/>
 </st:layout>
 </st:list>

 </st:panel>

 <st:panel id="example3" title="Example 3" page="example3" />
 </st:tabPanel>
</st:panel>

Not the <st:spacer> tag which we use to force the About button over to the right-hand
side of the toolbar.

Save, recompile and re-run and the application will look like this when it starts:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

7

Now we’ll add the modal panel to the tabPanel.ewd page, and also a handler for the
About button:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

8

<ewd:config isFirstPage="false" pageType="ajax" prePageScript="getAPIList^stdemo">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo">
 <st:toolbarButton type="autoback" id="listBackBtn" text="Back" hidden="true" />
 <st:spacer />
 <st:toolbarButton id="aboutBtn" text="About" handler="EWD.sencha.onAboutBtnTapped"/
>
 </st:toolbar>

 <st:tabPanel id="mainTabPanel">
 <st:panel id="helloworld" title="Hello" page="helloworld" />

 <st:panel id="example2" title="List" layout="card">

 <st:list scroll="vertical" id="apiList" sessionName="listOfAPIs" nextPage="apiDetails"
cardpanel="example2">
 <st:layout>
 <st:field name="optionText" displayInList="true"/>
 </st:layout>
 </st:list>

 </st:panel>

 <st:panel id="example3" title="Example 3" page="example3" />
 </st:tabPanel>
</st:panel>

<st:panel id="aboutPanel" floating="true" width="250" height="200" modal="true"
hidden="true">
 <div>
 About EWD!
 </div>
</st:panel>

Notice that we’ve put the modal panel outside the main panel. This is important to
ensure that it behaves correctly.

The key attributes that turns a panel into a modal pop-up one are:

• floating =” true”
• modal = “true”

We’re also specifying the size of the panel using the width and height attributes, and
initially the panel should be hidden.

Initially we’re just putting a simple bit of text inside the panel. Once we have it working
we’ll make it more interesting.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

9

Now we need to define that handler for the About button, so add the following to your
stdemo.js file:

EWD.sencha.onAboutBtnTapped = function(btn) {
 Ext.getCmp("aboutPanel").showBy(btn);
};

The idea, of course, is to make the modal panel appear when the user taps the About
button. Notice that we’re using a different method this time: showBy() rather than
show(). This is a really cool method that positions the modal panel relative to another
component. Note we’re passing in a parameter – btn. That is a pointer to our About
button and by using that in the showBy() method, the modal panel should line itself up
relative to the button.

So, save the tabPanel.ewd page and the stdemo.js file and recompile the stdemo
application. Now when you run it and you click the About button, you should see the
following:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

10

Tap anywhere outside the panel and it it will close automatically and you’ll get access to
the main panels again.

Now the really nice thing about modal panels is that they can hold pretty much anything
that a normal docked panel can hold, eg scrolling text , forms and lists. So, for example,
let’s put some more meaningful text in that panel and we’ll use the <st:pageItem> tag to
format it:

<st:panel id="aboutPanel" floating="true" width="250" height="200" modal="true" hidden="true"
scroll="vertical">
 <st:pageItem title="About" shadow="false">
 <div>
 This is an EWD-based mobile application that demonstrates the Sencha Touch
custom tags. This particular
 modal pop-up panel was described in Part 3 of the tutorial.
 </div>
 </st:pageItem>
</st:panel>

We’ve put quite a bit of text in it, and we could have made the panel taller by increasing
the height. However, just to demonstrate the capabilities, we’ve told the modal panel to
be scrollable in a vertical direction. Save the modified tabPanel.ewd file, recompile it
and re-run the application. This time you should see:

Try scrolling the text in the panel by touching and swiping it.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

11

You’ll soon find that when you use modal panels, it will be difficult to find a particular
height and width that will work satisfactorily on both a tablet (eg an iPad) and a phone.
Ideally you’ll want to use a larger panel on a tablet since you have the available space,
but restrict the size on the phone. Indeed you may even decide not to use modal panels if
the user is using a phone.

One of the nice things about Sencha Touch is that you can determine the type of device
the application is running on really easily, using the property:

Ext.is.Phone

This will return true if the user is using an iPhone or Android phone, but false if the user
is using anything else (including a compatible desktop browser such as Chrome).

So, we could adjust the size of the modal panel dynamically in the About button handler
as follows:

EWD.sencha.onAboutBtnTapped = function(btn) {
 var aboutPanel = Ext.getCmp("aboutPanel");
 if (Ext.is.Phone) {
 aboutPanel.setHeight(200);
 aboutPanel.setWidth(250);
 }
 else {
 aboutPanel.setHeight(500);
 aboutPanel.setWidth(400);
 }
 Ext.getCmp("aboutPanel").showBy(btn);
};

Try it and see!

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

12

Lesson 12: Using Forms

So far we’ve just looked at UI functionality that allows the retrieval and display of data
from your database. Of course you’ll often want to build mobile applications that allow
the user to save and update information in your database.

In order to do that, you’ll need to be able to create and use forms within your mobile
application.

First, however, a word of caution: mobile applications are all about slick, fast user
interfaces. As soon as you present a user with a form field where they need to type
something in, you’re stopping them in their tracks. Although some text entry is
inevitable and unavoidable in most business applications, the trick is to keep this to an
absolute minimum. There are often ways of getting the user to enter meaningful and
useful data without requiring them to type text, for example by using menus, radio
buttons, checkboxes, sliders, etc.

With that in mind, let’s look at how to present a form to a user.

We’ll start with a simple but useful form – a user login form. This will allow you to
ensure that only authorized users can access the application. Usually the login form will
be the first thing that comes up when the application is started, and that’s what we’ll now
do with our demo application.

So the first thing is to create a new EWD file named login.ewd in your stdemo application
directory (eg c:\ewdapps\stdemo\login.ewd or /ewd/ewdapps/stdemo/login.ewd)
containing the following:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

 <st:form id="loginForm" submitOnAction="false">
 <st:fieldset title="Please log in">
 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" />
 <st:field type="submit" text="Login" style="drastic_round" />
 </st:fieldset>
 </st:form>

</st:panel>

We’re going to make this the main content page – ie what appears when the application is
started, so we need to edit the index.ewd page:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

13

<ewd:config isFirstPage="true" cachePage="false">

<st:container rootPath="/sencha-1.0/" contentPage="login" title="EWD Demo">
 <script src="/stdemo.js" />
 <st:images>
 <st:image type="tabletStartupScreen" src="/sencha-
1.0/examples/kitchensink/resources/img/tablet_startup.png" />
 <st:image type="phoneStartupScreen" src="/sencha-
1.0/examples/kitchensink/resources/img/phone_startup.png" />
 <st:image type="icon" src="/sencha-1.0/examples/kitchensink/resources/img/icon.png"
addGloss="true" />
 </st:images>
</st:container>

Save these two files and recompile the stdemo application. When you restart it, you
should see:

You’ll find that this form won’t do anything yet. Let’s fist analyse what we specified to
make this form appear:

• We’ve made this login.ewd page the main content page, so it now contains the
main outer panel and the toolbar. We haven’t specifed any buttons in it yet

• We added a form panel, denoted by the <st:form> tag

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

14

• Inside the <st:form> we specified an <st:fieldset> tag which creates the styled
grouped set of form fields together with its title (“Please log in”)

• We then added three <st:field> tags for the username field, password field and
Login button. Note the id we gave the username and password fields: these will
be important later. The shape of the submit button is determined by the style
attribute. drastic-round is one of the standard Sencha Touch button styles and a
good one for forms. Try running the Sencha Touch Kitchen Sink demo
application to see many of the others that are available.

So that’s our basic form displaying itself properly. Next we’ll animate it so that when the
Login button is clicked, our tab panel slides into view. Initially we’ll not worry about
validating the username and password.

There are several things we need to do in order to animate the form. Remember from the
earlier exercises that animating a set of panels requires a card panel as a container, so
we’ll add that first, with the form initially the only card inside it:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

 <st:cardpanel id="mainCardPanel">
 <st:form id="loginForm" submitOnAction="false">
 <st:fieldset title="Please log in">
 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" />
 <st:field type="submit" text="Login" style="drastic_round" />
 </st:fieldset>
 </st:form>
 </st:cardpanel>

</st:panel>

Next we add a couple of attributes to the submit button field to tell it the name of the
fragment we want to fetch when it is clicked, and the id of the cardpanel to use as the
container for the animation which is slide by default:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

15

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

 <st:cardpanel id="mainCardPanel">
 <st:form id="loginForm" submitOnAction="false">
 <st:fieldset title="Please log in">
 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" />
 <st:field type="submit" text="Login" style="drastic_round" nextpage="tabPanel"
cardpanel="mainCardPanel" />
 </st:fieldset>
 </st:form>
 </st:cardpanel>

</st:panel>

Now before we try running the application again, we’ll have to do some surgery on the
tabPanel.ewd page. That’s because it was originally our main page and contains a full-
screen panel, toolbar, buttons etc. All that stuff is now being provided by our new
login.ewd page, so we need to take it out of the tabPanel.ewd page and just let it contain
the tab panel alone. Edit it to look as follows (take a copy of the original file first
because there is stuff in it that we’ll want to copy later!):

<ewd:config isFirstPage="false" pageType="ajax" prePageScript="getAPIList^stdemo">

 <st:tabPanel id="mainTabPanel">

 <st:panel id="helloworld" title="Hello" page="helloworld" />

 <st:panel id="example2" title="List" layout="card">
 <st:list scroll="vertical" id="apiList" sessionName="listOfAPIs" nextPage="apiDetails"
cardpanel="example2">
 <st:layout>
 <st:field name="optionText" displayInList="true"/>
 </st:layout>
 </st:list>
 </st:panel>

 <st:panel id="example3" title="Example 3" page="example3" />

 </st:tabPanel>

Now try saving the edited files, recompile and re-run the application. You should find
that when you click the submit button, it will slide the tab panel into view, and everything
should then work as before – it’s really starting to look like a proper application now!

Well, except that we’ve lost the back button and the about button. So let’s get them
reinstated. From your copy of tabPanel.ewd, copy the toolbar and button and replace the
mimimal toolbar we’d put into login.ewd:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

16

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo">
 <st:toolbarButton type="autoback" cardpanel="example2" id="listBackBtn"
text="Back" hidden="true" />
 <st:spacer />
 <st:toolbarButton id="aboutBtn" text="About"
handler="EWD.sencha.onAboutBtnTapped" />
 </st:toolbar>

 <st:cardpanel id="mainCardPanel">
 <st:form id="loginForm" submitOnAction="false">
 <st:fieldset title="Please log in">
 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" />
 <st:field type="submit" text="Login" style="drastic_round" nextpage="tabPanel"
cardpanel="mainCardPanel" />
 </st:fieldset>
 </st:form>
 </st:cardpanel>

</st:panel>

Notice also an extra attribute you should add to the back button: cardpanel=”example2”.
That tells EWD that this back button is for use by the cardpanel with an id of example2.
If you look in tabPanel.ewd you’ll see that’s the card panel used by the List of APIs and
its associated animation.

Just one more thing to do: we need to put the modal panel back. Copy it from your copy
of tabPanel.ewd and place it at the bottom of login.ewd. So the completed login.ewd
page should now look like this:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

17

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true" layout="card">
 <st:toolbar id="topToolbar" dock="top" title="EWD Demo">
 <st:toolbarButton type="autoback" cardpanel="example2" id="listBackBtn" text="Back"
hidden="true" />
 <st:spacer />
 <st:toolbarButton id="aboutBtn" text="About" handler="EWD.sencha.onAboutBtnTapped" />
 </st:toolbar>

 <st:cardpanel id="mainCardPanel">
 <st:form id="loginForm" submitOnAction="false">
 <st:fieldset title="Please log in">
 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" />
 <st:field type="submit" text="Login" style="drastic_round" nextpage="tabPanel"
cardpanel="mainCardPanel" />
 </st:fieldset>
 </st:form>
 </st:cardpanel>

</st:panel>

<st:panel id="aboutPanel" floating="true" width="250" height="200" modal="true"
hidden="true" scroll="vertical">
 <st:pageItem title="About" shadow="false">
 <div>
 This is an EWD-based mobile application that demonstrates the Sencha Touch
custom tags. This particular
 modal pop-up panel was described in Part 3 of the tutorial.
 </div>
 </st:pageItem>
</st:panel>

Save this version of login.ewd, recompile it and try running the application. Now
everything should be back as it was, except the user has to complete a login form first.

Notice that after the submit button is pressed, there is no way to bring back the form
which is precisely the behaviour was want.

Now let’s look at how we validate the username and password. Everything we need to
do will take place in the pre-page script of tapPanel.ewd since this is the “nextPage” that
we’re requesting when the submit button is clicked. We already have a pre-page script
for that page, which is currently just fetching the list of DOM APIs. Look in the routine
file (stdemo.m or open stdemo.mac using Caché Studio) and you’ll see that it currently
contains:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

18

getAPIList(sessid)
 ;
 n list,name,no
 ;
 s name="",no=0
 f s name=$o(^%zewd("documentation","DOM","method",name)) q:name="" d
 . s no=no+1
 . s list(no,"optionText")=name
 ;
 d deleteFromSession^%zewdAPI("list",sessid)
 d mergeArrayToSession^%zewdAPI(.list,"list",sessid)
 d saveListToSession^%zewdSTAPI(.list,"listOfAPIs",sessid)
 ;
 QUIT ""

Add the lines indicated below in this edited version:

getAPIList(sessid)
 ;
 n list,name,no,password
 ;
 s name=$$getRequestValue^%zewdAPI("name",sessid)
 s password=$$getRequestValue^%zewdAPI("password",sessid)
 i name'="rob" QUIT "Invalid name"
 i password'=1234 QUIT "Invalid password"
 d setSessionValue^%zewdAPI("username",name,sessid)
 ;
 s name="",no=0
 f s name=$o(^%zewd("documentation","DOM","method",name)) q:name="" d
 . s no=no+1
 . s list(no,"optionText")=name
 ;
 d deleteFromSession^%zewdAPI("list",sessid)
 d mergeArrayToSession^%zewdAPI(.list,"list",sessid)
 d saveListToSession^%zewdSTAPI(.list,"listOfAPIs",sessid)
 ;
 QUIT ""

Save and recompile the stdemo routine. On GT.M it’s also a good idea to run the
following in the GT.M shell:

 do relink^%zewdGTM

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

19

This ensures that the back-end m_apache processes relink their copy of the stdemo
routine so they’re using the latest version.

Now try running the application and try just clicking the submit button without entering
any name or password. This time you won’t be let in and an alert will up:

In fact you won’t be able to get any further unless you enter a username of rob and a
password of 1234, which is the validation rules we’d hard-coded into the pre-page script.
Enter the correct username and password, however, and the tab panel slides into view.

Note how simple EWD makes form field validation:

• We pick up the submitted values using EWD’s $$getRequestValue() method. The
field name you use is the same as the id attribute you specified in the form, ie:

 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" /
>

 s name=$$getRequestValue^%zewdAPI("name",sessid)
 s password=$$getRequestValue^%zewdAPI("password",sessid)

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

20

• We’ve just used some simple hard-coding to validate the username and password,
but you can use whatever user authentication functionality you already have in
place on your GT.M or Cache system, or write your own for your new
application..

• In order to signal a validation failure to EWD, simply QUIT with a non-empty
string return value. Whatever string you specify will automatically be used as the
text in a Sencha Touch alert panel that will pop up.

• Otherwise your pre-page script should continue on its way and ultimately QUIT
will an empty string as its return value. This signals to EWD that the pre-page
script ran without any validation errors, so it can now safely render the contents of
the nextpage fragment.

You now have a working username/password form! Try playing about with the
validation logic in the pre-page script, add new usernames, hook it up to an authentication
global etc.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

21

Lesson 13: The EWD Session

You may have noticed that there was an extra line we added to the username/password
validation code that wasn’t described in detail:

getAPIList(sessid)
 ;
 n list,name,no,password
 ;
 s name=$$getRequestValue^%zewdAPI("name",sessid)
 s password=$$getRequestValue^%zewdAPI("password",sessid)
 i name'="rob" QUIT "Invalid name"
 i password'=1234 QUIT "Invalid password"
 d setSessionValue^%zewdAPI("username",name,sessid)
 ;
 s name="",no=0
 f s name=$o(^%zewd("documentation","DOM","method",name)) q:name="" d
 . s no=no+1
 . s list(no,"optionText")=name
 ;
 d deleteFromSession^%zewdAPI("list",sessid)
 d mergeArrayToSession^%zewdAPI(.list,"list",sessid)
 d saveListToSession^%zewdSTAPI(.list,"listOfAPIs",sessid)
 ;
 QUIT ""

We’ve seen this command being used before: it saves a name/value pair into the user’s
persistent EWD Session storage. In the example above, we’re persisting the user’s
username as a an EWD Session variable named username. By doing this, any fragment
that is fetched by the user’s instance of the application can access this variable.

We can demonstrate this in the tab panel page which appears if the user successfully logs
in. Let’s change the toolbar title to give a personalized greeting. Edit tabPanel.ewd as
follows:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

22

<ewd:config isFirstPage="false" pageType="ajax" prePageScript="getAPIList^stdemo">

<st:js at="end">
 Ext.getCmp("topToolbar").setTitle('Welcome <?= #username ?>');
</st:js>

 <st:tabPanel id="mainTabPanel">

 <st:panel id="helloworld" title="Hello" page="helloworld" />

 <st:panel id="example2" title="List" layout="card">
 <st:list scroll="vertical" id="apiList" sessionName="listOfAPIs" nextPage="apiDetails"
cardpanel="example2">
 <st:layout>
 <st:field name="optionText" displayInList="true"/>
 </st:layout>
 </st:list>
 </st:panel>

 <st:panel id="example3" title="Example 3" page="example3" />

 </st:tabPanel>

The Sencha Touch function setTitle() will dynamically modify the tootbar’s title. Notice
how we’re referencing the EWD Session Name within the Javascript: <?= #username ?
>

Save this tabPanel.ewd file and recompile it. Now when you log in, you’ll see the
following:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

23

We’ve used the EWD Session in a number of ways so far without really studying what’s
been going on. In fact, the Session is one of the key parts of EWD, and understanding
how it works is important if you’re going to get the full benefit of EWD. So now we’ll
delve deep into what’s going on behind the scenes in EWD.

User Sessions and EWD Session Storage

In fact let’s start right back the URL you use to start an EWD application. In the case of
our stdemo application, in order to start it up you’ll have used a URL similar to one of the
following (your IP address or domain name will be different of course):

- GT.M: http://192.168.1.100/ewd/stdemo/index.ewd
- CSP: http://192.168.1.100/csp/ewd/stdemo/index.csp
- WebLink: http://192.168.1.100/scripts/mgwms32.dll?

MGWLPN=LOCAL&MGWAPP=ewdwl&app=stdemo&page=index

In all three cases, what we’re doing is requesting the page named index.ewd from the
EWD application named stdemo. We are allowed to do this with a simple “static” URL
because index.ewd was configured to be a “First Page” by virtue of its <ewd:config> tag:

<ewd:config isFirstPage=”true”>

What happens when you invoke a FirstPage with an untokenised URL is that EWD
creates a new, unique Session ID. This is simply an integer value but it is unique to you,
the user. Each time you subsequently click a link or button in an EWD page within the
application you’ve started, you send a URL back to the Caché server that identifies your
Session ID via a set of randomly-generated name/value pairs (or tokens) that will have
been automatically added to the URL by EWD.

Actually those tokens do two things:

• They identify you as a bona fide user who is allowed to request the fragment
specified in the URL from the Caché/GT.M back end system. If the token is
missing or not recognized, EWD will return an error fragment or alert back to the
browser and refuse to retrieve the fragment

• They securely identify your unique session Id. This is achieved via a lookup table
(mapping tokens to session Ids) that is automatically maintained by EWD within
the GT.M or Caché back-end system. EWD never directly exposes the user’s
session Id within the HTML or Javascript that runs in the browser. Instead it uses
the random tokens on the URLs as a highly secure proxy to the session Id. If the
user had to log in to access an EWD application, you (the owner of the
application) can then be highly confident that once the user has logged in,
subsequent requests for fragments that make up that application can only have
come from that user and not from someone simply pretending to be that person. It
is this high degree of security that has made EWD a popular framework for
applications that involve access to sensitive healthcare and financial data.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

24

If the EWD page that has been requested has an associated pre-page script it is invoked
before anything else happens. the user’s unique session Id (sessid) is passed into the
method by EWD. That’s why your pre-page script functions must always require sessid
as their one and only input parameter.

Now that the pre-page script knows the user’s unique session Id, calls can be made to the
EWD Session API methods (eg getSessionValue, setSessionValue etc) to access and
manipulate the user’s specific Session storage. These APIs are described in detail later.

EWD’s Session Storage (known simply as the EWD Session) provides a means by which
you, the developer, can retain user-specific data for the lifetime of the user’s session. A
user’s session starts when they invoke the initial untokenised URL to an EWD
application’s FirstPage, and finishes when one of two things happens:

• Most commonly, after the user is inactive for a predetermined duration (20
minutes by default), at which point their browser either:

o Automatically refreshes, forcing a reload of the index (or whatever
their first page was), which starts a new session (this is the default
EWD/Sencha Touch action); or

o Redirects them to a static URL or the first page of a different EWD
application (something that you, the developer can decide to do)

• Less frequently, the user invokes an action (that you, the developer, has
provided them with) that explicitly terminates their session and redirects them
to a static URL

Once an EWD session times out, it is no longer accessible even with a validly tokenized
URL. Any persistent EWD Session Data that is associated with a user session that has
timed out is automatically cleared down by EWD’s garbage collector.

The EWD Session Storage (aka EWD Session) is a key part of the EWD architecture and
determines how your EWD pages are designed and how information is conveyed between
the browser and back-end database. So let’s examine it in some more detail.

Designer versus Programmer

You’ve seen in this tutorial that an EWD application consists of two distinct parts:

• The EWD pages or fragments

• Back-end methods: ie Pre-page Script functions that run within GT.M or Caché.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

25

These are often referred to as the “front end” and “back end” respectively.

One of the key concepts of EWD is that these two parts of an application can be
developed by two different people:

• Front-end design can be carried out by a web application designer

• Back-end method development can be carried out by a programmer who is
familiar with GT.M or Caché, the data models that define the organisation’s
database, and business logic (ie functions, procedures and APIs) that already exist
within the organisation

The two halves of an EWD application require different disciplines and knowledge, and
EWD allows each half to be developed by the correct person with the correct skills.
Indeed the designer of the front-end does not have to know anything about the back-end
in order to create his/her part of the application. Similarly, the programmer can develop
all the scripts needed by an EWD application without really having to know anything
about how or why they are being used.

In practice, of course, many EWD applications will be developed by one or more people
who simultaneously adopt both roles of designer and programmer, but nevertheless,
EWD provides a very important separation between design and programming.

Unlike probably most other web application development environments, in EWD there is
no use of “data binding”. In other words, the front-end page page/fragment definitions
have no direct access to back-end data. This is deliberate and, contrary to most industry
preconceptions, turns out to be highly advantageous.

In fact there’s a critical problem with data binding: it irrevocably interlinks the front end
design with the back-end data model. Whilst fine for rapid development of quick
demonstration applications, for real-world applications it is distinctly bad news for
downstream maintenance and change. Let’s face it: all real-world applications, no matter
how simple and trivial, change over time. With data binding, if the front-end design
needs changing, it will almost certainly have an impact on the back-end database.
Similarly, changes to the back-end database schema will almost certainly impact on the
front-end design logic. The result is a time-consuming, complex and unnecessary mess
that consumes hours of development time, and/or hinders or, in the worst cases,
completely prevents enhancements to the application.

EWD takes a totally different approach and deliberately separates and de-couples the
front-end from the back-end. However, it provides an intermediate boundary layer
between the two: the EWD Session which each can access. The diagram below
summarises the architecture:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

26

Thus, the front-end designer has access to and can reference and use EWD Session
Variables and Arrays in his/her pages. The designer does not need to know where they
came from originally: he/she simply needs to know that they must exist in the EWD
Session and knows their structure (eg a simple name/value pair or a multi-dimensional
array with a particular structure).

In EWD/Sencha Touch applications, the designer has no direct role in creating EWD
Session data.

The task of creating and maintaining the data in the EWD Session is the sole
responsibility of the back-end programmer. Indeed the programmer’s role can be thought
of as simply moving data between the back-end database and the EWD Session:

• His/her Pre-Page Scripts will run queries against the database and transfer the
results into EWD Session Variables and/or Arrays (as summarised below);

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

27

• When a form has been submitted, his/her pre-page script will pick up the
corresponding Request values (EWD automatically puts them there), validate
them, and, if they are OK, save them back into the database and perhaps keep a
copy in the EWD Session (as summarised below)

The programmer can create all the scripts needed for an application without really having
to have any knowledge about the pages/fragments in which they will actually be used.

So, with EWD, the two participants, the designer and programmer, can work together, but
separately. The front-end design can be changed significantly without affecting the back-
end database, and often without even affecting the pre-page script functions. Conversely,
the back-end database can be altered without any impact on the front-end design:
provided the new database schema can be mapped in and out of the same EWD Session
structures, the front-end will still operate identically because it won’t see any change in
the EWD Session.

There’s another great benefit of this architecture. An EWD application can initially be
fully developed using mocked-up, hard-coded data in initial pre-page scripts. Once the
front-end is agreed upon, the pre-page script functions can be edited by a database
programmer to maintain the original EWD Session data structures but now using the real
database and real business logic. The change from design prototype to fully operational
system requires no further work by the designer!

There’s a further benefit: it is quite possible to migrate an EWD application from one
back-end database technology to another. Provided the new pre-page scripts maintain the
original EWD Session data structures, the front-end design will neither know nor care
that it’s being driven by an entirely different back-end database!

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

28

Accessing the Session from within an EWD Page

The designer accesses the EWD Session by using references to the data value(s) he/she
wants to display. There are three primary techniques:

a) In an attribute of a Sencha Touch Custom tag. The name of the EWD Session
variable should be prefixed with a # character, eg

<st:panel title=”#myTitle” />

b) Anywhere else in the content of the page/fragment, including within Javascript,
the <?= #sessionName ?> syntax is used, eg:

<div>The title <?= #myTitle ?> has come from the Session</div>

Ext.getCmp(“topToolbar”).setTitle(‘<?= #myTitle ?>’);

c) by specifying the sessionName attribute of a Sencha Touch Custom Tag. Usually
in this context the sessionName refers to an EWD Session Array through which
the EWD Sencha Touch custom tag processor will iterate in order to display its
contents, eg:

<st:list sessionName=”listOfAPIs” />

You’ve seen examples of all three techniques in the preceding examples of this tutorial.
Now you hopefully have a better idea what they mean!

EWD also provides more primitive custom tags for iterating through EWD Session
Arrays, but in Sencha Touch applications these will be rarely used. Refer to the EWD
API Guide (http://gradvs1.mgateway.com/download/APIGuide3.0.618.pdf) for more
details if you are interested.

Creating and Manipulating EWD Session Data

The programmer accesses the EWD Session through a range of APIs that EWD provides.
Although the EWD Session is physically implemented using Global storage in GT.M and
Caché, the programmer should never access the Global directly. This is because
M/Gateway reserves the right to change the Global structures in future releases of EWD
if it becomes necessary. The APIs will always retain their correct behaviour irrespective
of such internal changes, whereas direct access to the EWD Session Global by
programmers almost certainly won’t!

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

29

Although EWD provides quite a large range of APIs for Session management, in practice
there are only a small number of APIs that the programmer will typically need to use.

All EWD Session APIs include as their last parameter the user’s session Id, denoted by
the variable sessid. The most common APIs are as follows:

a) Creating a simple name/value pair

do setSessionValue^%zewdAPI(sessionName,value,sessid)

This creates a name/value pair named according to the sessionName
parameter with a value provided by the value parameter.

b) Getting the value of a simple name/value pair Session variable

set value=$$getSessionValue^%zewdAPI(sessionName,sessid)

This returns the value of a name/value pair named according to the
sessionName parameter.

c) Deleting a simple name/value pair Session variable

do deleteFromSession^%zewdAPI(sessionName,sessid)

This deletes a name/value pair named according to the sessionName
parameter.

d) Creating a Session array

First create a local array of any structure you like, eg

set array(“a”,”b”)=123
set array(“a”,”b”,”c”)=”foo”
set array(“a”,”c”)=”xyz”
set array(“d”,”a”)=999
set array(“d”,”b”)=”bar”

Then merge this to a corresponding EWD Session array using:

do mergeArrayToSession^%zewdAPI(.array,sessionName,sessid)

Note that array is called by reference, indicated by the period (.) that
prefixes it

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

30

Because this API uses a non-destructive merge, it is usually good practice
to first clear down anything that might exist in the EWD Session array, ie:

do deleteFromSession^%zewdAPI(sessionName,sessid)
do mergeArrayToSession^%zewdAPI(.array,sessionName,sessid)

e) Getting back a Session array to access/manipulate its contents

First do the reverse of step d, ie recover the Session array as a local array
using (make sure the local array is initially cleared down):

do mergeArrayFromSession^%zewdAPI(.array,sessionName,sessid)

Note that array is called by reference, indicated by the period (.) that
prefixes it

If we applied this to the Session Array created in example d above, the
local array would contain the following:

array(“a”,”b”)=123
array(“a”,”b”,”c”)=”foo”
array(“a”,”c”)=”xyz”
array(“d”,”a”)=999
array(“d”,”b”)=”bar”

If you make any changes to the local array, use the
mergeArrayToSession() API if you need to save the changes back into the
EWD Session.

f) Deleting an EWD Session array

do deleteFromSession^%zewdAPI(sessionName,sessid)

This deletes the entire contents of an EWD Session array named according
to the sessionName parameter

Processing Submitted Forms

In EWD Sencha Touch applications, when a form is submitted, the values of all the form
fields are transferred to an ephemeral storage known as the Request. The Request
contains the values of any name/value pairs that were sent with an HTTP request (eg a
request for a fragment). Those name/value pairs will be either:

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

31

• Name/value pairs that were added to the URL (ie using the HTTP GET method)

• Form field values (ie using the HTTP POST method)

The Request is cleared down on every HTTP request, so if you need to process or access
the incoming values of any name/value pairs, you must do so immediately in the pre-page
script of the associated fragment. If you need any of the Request name/value pairs to
persist longer, you must transfer them to the EWD Session using the appropriate API as
listed in the previous sub-section.

When you submit a form, the value of each form field’s id attribute is used as the
corresponding Request name.

So let’s look again at the pre-page script code we used for validating our example
username/password form:

 n name,password
 ;
 s name=$$getRequestValue^%zewdAPI("name",sessid)
 s password=$$getRequestValue^%zewdAPI("password",sessid)
 i name'="rob" QUIT "Invalid name"
 i password'=1234 QUIT "Invalid password"
 d setSessionValue^%zewdAPI("username",name,sessid)

Here’s the corresponding form:

 <st:form id="loginForm" submitOnAction="false">
 <st:fieldset title="Please log in">
 <st:field type="text" id="name" label="Name" labelWidth="33%" />
 <st:field type="password" id="password" label="Password" labelWidth="33%" /
>
 <st:field type="submit" text="Login" style="drastic_round" nextpage="tabPanel"
cardpanel="mainCardPanel" />
 </st:fieldset>
 </st:form>

So the value of the name field ended up in the Request name/value pair named “name”,
as highlighted in blue. The value of the password field ended up in the Request
name/value paid named “password”, as indicated in red.

In the pre-page script, we first get hold of the Request values using EWD’s
getRequestValue() API and then validate the values as required. In the example above
we want to persist the value of the name, so we’ve saved it in an EWD Session variable
named username.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

32

Although the name and password Request values will disappear when the next request for
an EWD fragment is sent from the browser, all subsequent fragments and their associated
pre-page scripts have access to the username as it is now saved in the user’s Session
storage.

Hence within the tabPanel.ewd page we were able to use the username EWD Session
value to modify the toolbar title:

<st:js at="end">
 Ext.getCmp("topToolbar").setTitle('Welcome <?= #username ?>');
</st:js>

This completes Part 3 of the EWD/Sencha Touch tutorial. In Part 4 we’ll look at the
other form field types that are provided by Sencha Touch and how to use them within
EWD. We’ll also look at some of the other really cool widget types that are available as
EWD Custom Tags.

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

33

EWD : Sencha Touch Custom Tags Tutorial Part 3. Build 852: 16 Febuary 2011.
Copyright 2011, M/Gateway Developments Ltd. All Rights Reserved

34

	EWD
	Using the Sencha Touch Custom Tags for Mobile Applications
	Build 852

