EWD
Using the Sencha Touch Custom Tags for Mobile Applications

Tutorial: Part 2
Build 846

Background

This is the second part of our tutorial on mobile web application development using
Enterprise Web Developer (EWD)’s Sencha Touch Custom Tags.

It is recommended that you complete (or at least read) Part 1 before embarking on the
exercises in this second part of the tutorial.

In Part 1, we covered the basics of creating mobile web applications using EWD and
Sencha Touch, and touched on how EWD integrates seamlessly with the Cache and
GT.M databases.

In this part we’ll start to flesh out our example to use some of the cool widgets that EWD
and Sencha Touch provides, and we’ll begin to create a fully-fledged database-driven
application. We’ll also examine in more detail the underlying architecture of EWD and
in particular what’s behind EWD’s persistent Sessions.

Note that for Part 2 you'll need build 846 or later of EWD, as some of the features and
techniques described in this tutorial have been added since the build originally released
for Part 1.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
1

Lesson 7: Menus and Lists

One of the primary Ul components that is used in most mobile web applications is the
menu or List. The List is a particularly effective way of navigating and selecting from
quite large amounts of data because you can use a swipe gesture to quickly scroll through
the list. The scrolling list will have momentum and will continue to scroll by after fast
swipe gesture.

So let’s change our simple Hello World application and make it start with a simple list of
3 options, the first of which will take us to our Hello World page.

What we use to create menus in EWD is the Sencha Touch <st:list> tag. The options or
data in the list is defined dynamically within Cache or GT.M. So create a new file in
your stdemo directory named mainMenu.ewd as follows:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">

<st:panel fullscreen="true" scroll="vertical">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
</st:toolbar>

<st:list id="mainMenu" sessionName="mainMenuOptions" scroll="false">
<st:layout>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>

</st:panel>

Now add the Pre-Page script function getMainMenu() to your stdemo routine, eg:

getMainMenu(sessid)

n list

s list(1,"optionText")="Hello World"
s list(2,"optionText")="Example 2"

s list(3,"optionText")="Example 3"

d saveListToSession%zewdSTAPI(.list,"mainMenuOptions",sessid)

bUIT "

Finally we need to modify the index.ewd page so that it loads up the new mainMenu.ewd
page instead of our original helloworld.ewd page:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
2

<ewd:config isFirstPage="true" cachePage="false">

<st:container rootPath="/sencha-1.0/" contentPage="mainMenu" title="EWD Demo">
<script src="/stdemo.js" />
<st:images>
<st:image type="tabletStartupScreen" src="/sencha-
1.0/examples/kitchensink/resources/img/tablet startup.png" />
<st:image type="phoneStartupScreen" src="/sencha-
1.0/examples/kitchensink/resources/img/phone_startup.png" />
<st:image type="icon" src="/sencha-1.0/examples/kitchensink/resources/img/icon.png"
addGloss="true" />
</st:images>
</st:container>

Once you’ve created and saved these files, recompile the stdemo application.

If you’re using GT.M, you’ll also have to ensure that the routine file stdemo.m that
contains the new pre-page script has been re-compiled, by running, in the Linux shell:

mumps stdemo.m

If you’ve done everything correctly, when you re-run the stdemo application you should

S€C:

Carrier = 12:39 PM

EWD Demo

Hello World
Example 2

Example 3

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
3

Let’s take a look at what we did to create this. Specifically look at mainMenu.ewd and its
pre-page script (getMainMenu):

* First we used the <st:/ist> tag which creates an instance of the Ext.List class.

* We added this as a sub-component of the main panel which is occupying the full
screen of our mobile device, so it sat inside the main panel and below the top
toolbar

* The pre-page script creates a simple array of options. The first subscript (1..n)
denotes the position of the option in the list, and the second subscript
(“optionText”) defines a property that we want to use and/or display in the list.

* The <st:list> tag has a child tag <st:layout> which allows us to define how was
want each row in the list to be presented. In this example we just want to display
the optionText property, so we use the <st.field> tag to denote that.

* The option array that is created in the pre-page script is saved to the EWD Session
as a JSON datastore named mainMenuOptions using the special EWD/Sencha
Touch API: savelistToSession()

* By defining the sessionName attribute of the <st:/ist> tag to be
mainMenuOptions, the list of options we saved into the EWD Session will be
used to dynamically populate the List.

Note that we could have used any property name instead of optionText, but whatever
name you use in the options array must be referenced as an <st:field> name within the
<st:layout> tag.

Adding a handler

OK so we’ve now displayed our list of options as a menu. However, it’s not doing much
yet: tapping any of the options will have no effect at present.

That’s because we haven’t defined any handler for the menu options yet. So let’s change
that. As you’re going to discover, we have numerous options available to us now, but
let’s start with something simple and we’ll progressively make it slicker and powerful.

First edit the mainMenu.ewd page as follows:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
4

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
</st:toolbar>

<st:list id="mainMenu" sessionName="mainMenuOptions" onTap="EWD.sencha.helloWorld">
<st:layout>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>

<st:panel id="helloworld" html="Hello World!" hidden="true" />

</st:panel>

What we’ve done is add an onTap attribute to the <st:list> tag and we’ve added our
Hello World panel as an initially hidden sub-panel.

Now let’s add that onTap handler function to the stdemo.js file:

EWD.sencha.helloWorld = function(index,record) {
Ext.getCmp("mainMenu").hide();

Ext.getCmp("helloworld").show();

1B

The onTap handler function takes two parameters: index (the option number 0..n), and
record (the data record held in the tapped row)

In this first example, we’ll hide the main menu and make the Hello World panel appear in
its place. Remember that the id attribute of our Sencha Touch tags allows us to point
directly to them using Sencha Touch’s Ext.getCmp() method.

If you save the edited stdemo.js file, recompile the modified mainMenu.ewd page and re-
run the application, you should now find that tapping any of the menu options will make
the menu disappear and the Hello World! Message will appear.

OK so that’s a step forwards, but how can we make the Hello World message appear only
if we click the first menu option? That’s where the index parameter can be useful. Try
editing the EWD.sencha.helloWorld() function as follows:

EWD.sencha.helloWorld = function(index,record) {
Ext.getCmp("mainMenu").hide();

If (index === 0) Ext.getCmp("helloworld").show();

I8

When you save stdemo.js and re-run the application, you should now find Hello World!
only appears when you click the first menu option.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
5

Adding a Slide Animation

That’s getting better, but one of the cool features you’ll frequently see in mobile

applications is the animations such as sliding panels when you tap menu options, so let’s
now add that to our menu.

The first thing to understand is how animated sliding panels work conceptually in Sencha
Touch. What you require is a special type of containing panel. In Sencha Touch, panels
can have a property known as a layout, and there are a variety of layout types available.
The one we require for sliding animations is called a card layout, and in EWD you can
specify this using the <st:cardPanel> tag. We need to make both the List and our Hello
World panel to be members of this Card Panel in order for them to be animated. So
change mainMenu.ewd as follows:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">
<st:panel id="mainPanel" fullscreen="true">

<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
</st:toolbar>

<st:cardPanel id="mainCardPanel">
<st:list id="mainMenu" sessionName="mainMenuOptions" onTap="EWD.sencha.helloWorld">
<st:layout>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>
<st:panel id="helloworld" html="Hello World!" />
</st:cardPanel>

</st:panel>

What we’ve done is to wrap the <st:/ist> tag inside a <st:cardPanel> tag, and we’ve
also moved the Hello World panel inside the <st:cardPanel>. Only one panel at a time
is displayed in a Card Panel, and the first one is used as the one to initially be displayed.
As a result we can safely remove the hidden="true” attribute from the helloworld panel.

Now modify the EWD.sencha.helloWorld() function:

EWD.sencha.helloWorld = function(index,record) {

If (index === 0) Ext.getCmp("mainCardPanel").setActiveltem(Ext.getCmp("helloworld"),"slide");
IR

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
6

The Sencha Touch setActiveltem() function selects which panel is to be made visible (or
active) inside the Card Panel. Here we’ll make the panel with an id of helloworld the
active one, and we specify a slide transition to provide the desired animation.

Save these files, recompile the application and now when you click the first menu option,
the Hello World panel should slide into view. Now it’s starting to look cool!

Using EWD to make the coding even simpler

Although we haven’t had to write much code to make this happen, EWD can make
specifying menus even quicker and simpler, with less reliance on explicitly using the
underlying Sencha Touch Javascript functions.

The first thing we can do is to programmatically specify the page associated with a
particular option within our pre-page script. We do that by adding an additional property
to the array that defines the page: we’ll use a property named page for this, but you can
choose any name you like:

getMainMenu(sessid)
n json,list

s list(1,"optionText")="Hello World"
s list(1,"page")="helloworld"

s list(2,"optionText")="Example 2"

s list(2,"page")="example2"

s list(3,"optionText")="Example 3"

s list(3,"page")="example3"

d saveListToSession%zewdSTAPI(.list,"mainMenuOptions",sessid)

bUIT "

Now add this new field to the layout, but make sure it’s not actually displayed by setting
displaylnList="false”:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
7

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
</st:toolbar>

<st:cardPanel id="mainCardPanel">
<st:list id="mainMenu" sessionName="mainMenuOptions" onTap="EWD.sencha.helloWorld">
<st:layout>
<st:field name="page" displayInList="false"/>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>
<st:panel id="helloworld" html="Hello World!" />

</st:cardPanel>

</st:panel>

Now we can replace that onTap attribute with a special EWD attributed named
nextPageField:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
</st:toolbar>

<st:cardPanel id="mainCardPanel">

<st:list id="mainMenu" sessionName="mainMenuOptions" nextPageField="page">
<st:layout>
<st:field name="page" displayInList="false"/>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>

€ remove

</st:cardPanel>

</st:panel>

Next, as it shows above, we’re going to take our Hello World panel out of the
mainMenu.ewd page and put it back again into its own EWD file, named helloworld.ewd.
All it should contain is:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
8

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="helloworld" html="Hello World!" />

We don’t have to specify a transition since s/ide is used by default. Just to make sure that
our new mechanism will be used instead of our original Javscript function, delete or
comment out the EWD.sencha.helloworld() function from stdemo.js.

Now save the files and recompile mainMenu.ewd and try re-running the application.
You should find this behaves just like our first “long-hand” approach.

There’s a key difference in this approach: the helloworld panel is being injected into the
browser’s page using Ajax techniques rather than pre-existing in the page but not yet
visible. This has its downsides: a round-trip to the server is required to fetch it. However
it also has many benefits, not least the fact that it allows us to break up the UI into small,
manageable chunks that can, if required, be developed and maintained independently by
different people.

Now try trying some different transitions. Possible options are:

o Aflip
* pop
e cube
e fade
e slide

For example:

<st:list id="mainMenu" sessionName="mainMenuOptions" nextPageField="page”
transition="fade">

As a final exercise in this part of the lesson, now try adding panels for the Example 2 and
Example 3 options by creating separate EWD fragment files for them, ie example2.ewd
and example3.ewd.

You should now have a fully functioning menu, with each of the three options bringing
their respective panel into view.

Adding a Back Button

Of course, by now it will be obvious to you that there’s still a deficiency in our menu: it’s
impossible to go back to the main menu and choose a different option. The only way to
see the main menu again is to restart the application!

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
9

So let’s see how that is done. Once again there is the “long-hand” manual Sencha Touch
mechanism and a simple automated shortcut EWD mechanism. Let’s use the Sencha
Touch mechanism first.

The first step is to add a back button into the toolbar in mainMenu.ewd:

—n

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo'">

<st:toolbarButton ui="back" id="backBtn" text="Back" hidden="true"
handler="EWD.sencha.onBackBtnTapped" />

</st:toolbar>

<st:cardPanel id="mainCardPanel">
<st:list id="mainMenu" sessionName="mainMenuOptions" nextPageField="page" transition="slide">
<st:layout>
<st:field name="page" displayInList="false"/>
<st:field name="optionText" displayInList="true"/>
</st:layout>
</st:list>
</st:cardPanel>

</st:panel>

The ui="back” attribute specifies that we want a properly styled Back-button, and we
want it initially hidden. We’ve also specified a handler, so let’s define that next.

What we need is a function that will return the user to the mainMenu panel, reversing the
slide transition. So let’s add that to the stdemo.js file:

EWD.sencha.onBackBtnTapped = function() {
Ext.getCmp("mainCardPanel").setActiveltem(0, {type:"slide", direction: 'right'});
Ext.getCmp("backBtn").hide();

Ext.getCmp("helloworld").destroy();

IE

The setActiveltem() function is used again to return the List into view: notice that we use
a 0 (zero) as its first parameter to specify the first item in the Card Panel which was the
List. The second parameter is an object that invokes a reverse slide transition.

When we return to the List, we want to hide the button again which is the purpose of the
second command. But what about that third command that uses the destroy() function:
what’s it there for?

The reason is because we’re using Ajax techniques to inject the helloworld (or the other)
panel, and when we go back to the menu there’s a good chance that we’ll choose the
same option and inject another instance of the helloworld panel into the page. Because

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
10

the helloworld panel is actually represented as a complex set of Javascript objects within
Sencha Touch, it’s going to get horribly confused if we try to inject multiple instances of
this same object into the page. We can avoid that by getting Sencha Touch to destroy it
and clear away all vestiges of it when we go back to the List:

There’s one last thing we need to do: make the button appear when the helloworld panel
slides into view. We’re using EWD’s automated nextPageField mechanism, so we don’t
have an explicit handler function that we have access to in order to show() the back
button. However, we can add the necessary Javascript into the helloworld.ewd page:

<ewd:config isFirstPage="false" pageType="ajax">

<st:js at="end">
Ext.getCmp("backBtn").show();
</st:js>

<st:panel id="helloworld" html="Hello World!" />

This inline Javascript command will make the back button appear when the fragment is
injected into the page.

Try it all out: Save the new versions of the files, recompile them and run the application
again. You should now be able to navigate to and fro between the Main Menu and the
HelloWorld panels, with the back button appearing and disappearing at the correct times:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
11

Carrier 7:52 AM
Back EWD Demo
Hello World!

Carrier = 7:51 AM

EWD Demo

Hello World

Example 2

Example 3

A 4 R

We still have a problem: that destroy() method is only being applied to the helloworld
panel. What if the user chooses one of the other options? Things will clearly go wrong.
So we need to change that Back Button handler to identify and destroy whatever is the
current panel. That’s actually quite simple to do: here’s the modified version of the
handler function:

EWD.sencha.onBackBtnTapped = function() {
var cardPanel = Ext.getCmp("mainCardPanel");
var currentPanel = cardPanel. getActiveltem();
cardPanel.setActiveltem(0, {type:"slide", direction: 'right'});
Ext.getCmp("backBtn").hide();

currentPanel.destroy();

Ik

Note the way I’ve set up variables that point to the cardPanel and currentPanel objects:
that’s because I’m making more than one reference to them in the logic, so it’s more
efficient done this way. As a side benefit I think it’s also easier to read and maintain
when written this way.

The key function here is the Sencha Touch getActiveltem() which returns the currently

active item in the Card Panel. Now we have a totally general purpose Back Button
handler.

Automating the List’s Back Button

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
12

So that’s how to use the Sencha Touch functions to implement the back button with the
required behaviour. However, provided we’re only using a single level of menus in our
application, EWD can automate almost everything all for us. Simply remove the ui and
handler attributes from the back button tag in mainMenu.ewd and replace them with
type="autoback’:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getMainMenu”stdemo">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
<st:toolbarButton type="autoback" id="backBtn" text="Back" hidden="true" />
</st:toolbar>

<st:cardPanel id="mainCardPanel">
<st:list id="mainMenu" sessionName="mainMenuOptions" nextPageField="page" transition="slide">
<st:layout>
<st:field name="page" displayInList="false"/>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>
</st:cardPanel>

</st:panel>

For good measure you can delete or comment out the handler that we wrote in stdemo.js.
We will still need the inline code that brings the back button into view in the helloworld
(and other) panels.

Save the files, recompile the application and run it again: it should behave just as before,
but this time entirely automatically!

You’ll find that this automated mechanism will break down if you have several layers of
menus and sub-menus: if so, revert to the explicit handlers we used initially. Also, if you
require multiple levels of menus, the simplest approach is to have specific back buttons
for each level, each with their own handler, and each brought in and out of view at the
appropriate times. You saw how to do that in Part 1.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
13

Lesson 8: Tab Panels

In Lesson 7 we saw how to create a simple menu and Card Panel that we used for
navigation. In Sencha Touch there is an alternative UI technique which is the TabPanel.
Instead of a list of options in a menu, we can present the options as a set of tabs in a
toolbar.

The advantage of this approach is its simplicity: the TabPanel looks after all the
animation and to-ing and fro-ing between options for us. If you’ve only got a small
number of menu/navigation options, they’re probably the better technique to use.

So let’s rewrite our application to use a TabPanel instead.

Create a new EWD page in your stdemo directory named tabPabel.ewd with the
following contents:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

<st:tabPanel id="mainTabPanel">
<st:panel id="helloworld" title="Hello" html="Hello World!" />
<st:panel id="example2" title="Example 2" html="Example 2" />
<st:panel id="example3" title="Example 3" html="Example 3" />
</st:tabPanel>

</st:panel>

Now change index.ewd so that it loads this page instead of mainMenu.ewd, ie:

<ewd:config isFirstPage="true" cachePage="false">

<st:container rootPath="/sencha-1.0/" contentPage="tabPanel" title="EWD Demo">
<script src="/stdemo.js" />
<st:images>
<st:image type="tabletStartupScreen" src="/sencha-
1.0/examples/kitchensink/resources/img/tablet startup.png" />
<st:image type="phoneStartupScreen" src="/sencha-
1.0/examples/kitchensink/resources/img/phone_startup.png" />
<st:image type="icon" src="/sencha-1.0/examples/kitchensink/resources/img/icon.png"
addGloss="true" />
</st:images>
</st:container>

Recompile the stdemo application and try running it again. This time you should see:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
14

Carrier Z° 11:39 AM

EWD Demo

Hello

Hello World!

A

Try clicking the tabs and you’ll see the three sub-panels alternately slide in and out of
view. This is clearly a much simpler method to specify in order to allow navigation
around your applications.

You can see, however, the key limitation: if you’re running the application on an iPhone
or Android phone: you don’t have much room for meaningful tab names. If you are
running on a desktop or tablet you have much more room, in which case tabs become a
much more useful Ul device.

Using EWD Fragments with the Tab Panel

You can also see that in order to use the TabPanel widget, you apparently need to specify
all the subpanels and their contents in the same page. This can be advantageous, because
no additional round-trips to the server are required.

However, your application may be sufficiently large that you want to break it up into
EWD fragments. This is, in fact, possible to do. Let’s once again look at some of the
manual techniques you could use by using Sencha Touch’s own built-in APIs, and then
we’ll finally look at how EWD can simplify the task to an almost trivial degree.

One Sencha Touch technique we could use is to detect the event that is triggered when a
sub-panel is brought into view as a result of you clicking a tab. You could do this in
tabPanel.ewd as follows:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
15

<ewd:config isFirstPage="false" pageType="ajax">

<st:;js at="end">

Ext.getCmp("mainTabPanel").on("cardswitch",function() {
Ext.Msg.alert('Attention!', this.getActiveltem().id, Ext.emptyFn);

1)

</st:js>
<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

<st:tabPanel id="mainTabPanel">
<st:panel id="helloworld" title="Hello" html="Hello World!" />
<st:panel id="example2" title="Example 2" html="Example 2" />
<st:panel id="example3" title="Example 3" html="Example 3" />
</st:tabPanel>

</st:panel>

You saw the <st.js> tag in Part 1. So this is inline Javascript that will be added after the
generated Sencha Touch code (controlled by the at="end” attribute), and it is adding a
“cardswitch” event handler to the Tab Panel. This will fire each time you click one of
the tabs and will display the id of the active panel.

If we replaced the alert function with the EWD.ajax.getPage() function then we should
be able to fetch a corresponding fragment for each tab, eg:

Ext.getCmp("mainTabPanel").on("cardswitch",function() {
EWD.ajax.getPage({page: this.getActiveltem().id });

1)

However, there are a few problems with this technique:

* the cardswitch event does not fire when the tabPanel page is initially loaded so
content for the helloworld panel will not be fetched.

* We would only want to fetch the content once for each sub-panel, so we’d have to
use some kind of Javascript array to record this, and only call
EWD.ajax.getPage() if the fragment isn’t already logged in the array.

There are other, similar Sencha Touch techniques that you could use, such as detecting
the render event for each of the subpanels that you can try experimenting with if you
wish.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
16

Some advanced EWD: Using the <st:listener> tag

Rather than manually coding the Javascript within an <st:js> tag, an advanced technique
within EWD is to specify a listener for each sub-panel. For example, you could expand
the helloworld panel as follows:

<st:panel id="helloworld" title="Hello">
<st:listeners>
<st:listener render=".function() {EWD.ajax.getPage({page:'helloworld'});}" />
</st:listeners>
</st:panel>

Note the period (.) in front of the text string “function”. This tells EWD to not use the
attribute value as a quoted string literal, but rather as an unquoted reference. If you want
to try out this example, you’ll need to make one more change, this time to your
helloworld.ewd page:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel html="Hello World!" addTo="helloworld" />

The reason for this is that this fragment will otherwise simply generate and inject a
Javascript constructor to create the Hello World panel into the browser page, but it won’t
do anything with it. By adding the addTo attribute, we’re telling EWD to also add it to
the Sencha Touch widget that has an id="helloworld”” which is the first sub-panel in the
Tab Panel. The result is we’ve now created a stub panel in our TabPanel.ewd page which
automatically fetches its content from the helloworld.ewd fragment when the Tab Panel is
rendered.

That gives you some insight into some of the advanced techniques that you can use when
you become familiar with EWD and Sencha Touch.

Automating it with EWD

You’re probably thinking that things all started to get terribly complicated! Now let’s
look at how EWD can simplify everything again for us.

Since this kind of behaviour is something you’ll want to do very frequently, EWD
provides an automated way of achieving all this functionality with just a single attribute
called page on each of the sub-panels. We can therefore re-write tabPanel.ewd as
follows:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
17

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="mainPanel" fullscreen="true">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

<st:tabPanel id="mainTabPanel">
<st:panel id="helloworld" title="Hello" page="helloworld" />
<st:panel id="example2" title="Example 2" page="example2" />
<st:panel id="example3" title="Example 3" page="example3" />
</st:tabPanel>

</st:panel>

Now edit or create the three content fragment files as follows:

helloworld.ewd:

—n

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel html="Hello World!" addTo="helloworld" />

example2.ewd:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel html="This is example2" addTo="example2" />

example3.ewd:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel html="This is example3" addTo="example3" />

Recompile the stdemo application and now try running it. If you look in detail at what
happens when you run it using Chrome’s Developer Tools, you’ll see three parallel
asynchronous requests are made for the content fragments immediately after
TabPanel.ewd is rendered.

The cool thing is that these requests are only made once when the Tab Panel is initially
rendered, and thereafter when you switch between tabs, you’re working entirely locally in
the browser.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
18

Lesson 9: Selecting data from a List

We’re going to re-visit the <st:list> tag, but this time we’ll examine it’s role in
displaying a set of data. We’ll also look at how you can do something when the user
selects an item from the list.

The differences to our previous example where we used a List as a Ul navigation device
are:

* The list will contain the results of a database search rather than some
predetermined options

* We will probably want to perform the same action irrespective of the row in the
List that is selected by the user.

For this example we’ll use one of the Globals that EWD will have created on your
system, specifically the one that holds the documentation for its DOM APIs. This will
give us a nice long list of options to display in our application.

We’ll use the Tab Panel that we created in the previous lesson, and we’ll replace the
middle panel with a panel that will display the list of the APIs. So edit tabPanel.ewd as
follows:

<ewd:config isFirstPage="false" pageType="ajax" prePageScript="getAPIList"stdemo">
<st:panel id="mainPanel" fullscreen="true" layout="card">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo" />

<st:tabPanel id="mainTabPanel">
<st:panel id="helloworld" title="Hello" page="helloworld" />

<st:panel id="example2" title="List” layout="card">
<st:list scroll="vertical" id="apiList" sessionName="1istOfAPIs">
<st:layout>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>
</st:panel>

<st:panel id="example3" title="Example 3" page="example3" />
</st:tabPanel>
</st:panel>

When you are creating a List such as this inside a Tab Panel, it’s very important to follow
a pattern such as the one shown above otherwise Sencha Touch won’t display anything.
In particular, make sure you have the attributes exactly as shown in red. You’ll also
notice that we’ve defined the List within the tabPanel page rather than in a separate
fragment as per our last lesson. This is because the panel that is to contain the List
(id="example2 ”) cannot render a List if the panel is initially empty.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
19

The <st:list> tag is defined similarly to our previous example, and this time the list of
options is being held in an EWD Session variable named /istOf4PIs. That is being
created by the pre-page script: getAPIList"stdemo. Here’s what that function looks like:

getAPIList(sessid)

b
n list,name,no

s
"

s name="",n0=0

f s name=$0("%zewd("documentation","DOM","method",name)) q:name="" d
. sno=no+1

. s list(no,"optionText")=name

d saveListToSession%zewdSTAPI(.list,"listOfAPIs",sessid)

QUIT "

So the only real difference from our first List example is that the option list is being
generated by iterating through a Global.

Save these files, recompile and run the application again and you should see the

following:

N

Carrier & 8:30 PM
EWD Demo
Hello

Hello World!

- 4

Clicking on the List tab will bring up the list of APIs:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
20

Carrier 5 8:32 PM

H EWD Demo

List

addCSPServerScript

addElementToDOM
addJavascriptFunction
addJavascriptObject
addTextToElement
appendChild
attributeExists

clearDOMs

A y

You can try swiping through the menu to see how quickly you can search and navigate
through it.

So that’s our menu displaying. Now how can we use it?

Typically you’ll want the user to be able to tap a menu option and have a new panel slide
into view that presents some more specific information about the option they selected,
either to simply view it or manipulate it in some way. Let’s see how to do that.

The first thing is to add two EWD-specific attributes to the <st:/ist> tag in the
tabPanel.ewd page:

<st:panel id="example2" title="List" layout="card">
<st:list scroll="vertical" id="apiList" sessionName="listOfAPIs" nextPage="apiDetails"
cardpanel="example2">
<st:layout>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>
</st:panel>

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
21

The nextPage attribute tells EWD the name of the fragment to fetch when any item in the
list is tapped. The cardpanel attribute tells EWD the id of the Card Panel that you want
to use so that the nextPage fragment can be both added to it and animated as it comes into
view. A slide transition is used by default. Notice in tabPanel.ewd that we specified the
example2 panel to have a layout="card” for this purpose (as highlighted in red above).

We haven’t created that fragment named apiDetails.ewd yet, so let’s do that now: create
the file in your stdemo directory. Initially we’ll keep its contents simple just to check
this step works correctly:

<ewd:config isFirstPage="false" pageType="ajax">

<st:panel id="apiDetails" html="List item was selected!" />

Save, compile and re-run the application as usual. This time when you tap any of the API
names in the list, our new apiDetails panel should now slide into view:

/

Carrier = 9:33 AM

EWD Demo

\

List

List item was selected!

' 4

Of course we now need a Back button in the toolbar to allow us to return to the list of
APIs, so let’s add that. We use the same mechanism that was described earlier:

Add the toolbar button into tabPanel.ewd, make it styled as a Back button, initially
hidden and add a reference to its handler function:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
22

<ewd:config isFirstPage="false" pageType="ajax" prePageScript="getAPIList"stdemo">

<st:panel id="mainPanel" fullscreen="true" layout="card">
<st:toolbar id="topToolbar" dock="top" title="EWD Demo">
<st:toolbarButton ui="back" id="listBackBtn" text="Back" hidden="true"
handler="EWD.sencha.onListBackBtnTapped" />

</st:toolbar>

<st:tabPanel id="mainTabPanel">
<st:panel id="helloworld" title="Hello" page="helloworld" />
<st:panel id="example2" title="List" layout="card">
<st:list scroll="vertical" id="apiList" sessionName="1istOfAPIs" nextPage="apiDetails"
cardpanel="example2">
<st:layout>
<st:field name="optionText" displaylnList="true"/>
</st:layout>
</st:list>
</st:panel>
<st:panel id="example3" title="Example 3" page="example3" />
</st:tabPanel>
</st:panel>

Next, add the EWD.sencha.onListBackBtnTapped() function into your stdemo.js file:

EWD.sencha.onListBackBtnTapped = function() {
Ext.getCmp("example2").setActiveltem(0, {type:"slide", direction: 'right'});
Ext.getCmp("apiDetails").destroy();

Ext.getCmp("listBackBtn").hide();

IE

So this will slide back the API List back into view inside the example2 Card Panel, it
destroys the injected instance of the apiDetails panel and hides the Back button again.

Finally we need to ensure that the Back button appears when apiDetails.ewd slides into
view, so edit apiDetails.ewd:

<ewd:config isFirstPage="false" pageType="ajax">

<st:js at="end">
Ext.getCmp("listBackBtn").show();
</st:js>

<st:panel id="apiDetails" html="List item was selected!" />

Save, recompile and re-run the application. Now you should see the Back button
appearing when you tap an API name and the apiDetails panel slides into view, and
tapping the Back button should return you to the API list and the button should disappear
again.

Note: you could also have used the even simpler type="autoback” mechanism that we
described earlier. You might want to give it a try!

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
23

It should be clear by now that there is one remaining step that we need to understand in
this exercise to make it a really useful piece of functionality: how can we make the
apiDetails.ewd fragment recognize which API we tapped in the List so that it can provide
the user with information specific to that particular one?

Actually it’s very simple. By using the nextPage attribute in the <st:list> tag, EWD is
already passing the number of the item you tapped. This number equates to the number
in the option array that you created in the pre-page script. So if the user taps the first
item, EWD returns 1.

EWD returns the item number as a name/value pair that it automatically adds to the URL
that is used to fetch the apiDetails fragment. For example, if I was using WebLink, the
request for the apiDetails fragment would look something like this:

http://192.168.1.110/scripts/mgwms32.d11?
MGWCHD=0&MGWAPP=ewdwl&app=stdemo&page=apiDetails&ewd token=MWCF;jJQIi9sShTZIE
N1iXkY12d3K55&n=v8cU35uZWEIWPVZKZMQ3eKJIpgvHp30&listitemNo=1&ewdrn=612485987

Highlighted in red is the name/value pair that EWD added when I tapped the first API in
the List.

The trick to using this is to add a pre-page script to apiDetails.ewd:

<ewd:config isFirstPage="false" pageType="ajax" prepagscript="getAPIDetails"stdemo”>

<st:js at="end">
Ext.getCmp("listBackBtn").show();
</st:js>

<st:panel id="apiDetails" html="List item was selected!" />

In this pre-page script, we can pick up the value of that name/value pair using the EWD
API getRequestValue().

However, we have a bit of a problem: all that EWD is returning is the number of the
selected option, but that was just a number we used to sequence the list of APIs in the
menu: it doesn’t provide a direct pointer back to the “%zewd(“‘documentation”, ”"DOM”’)
global which is where the API details originated and are held.

We can resolve that by adding an extra couple of lines to the pre-page script that created
the List of APIs. Edit that function in your “stdemo routine:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
24

getAPIList(sessid)

s
n list,name,no

>

s name="",n0=0

f s name=$0("%zewd("documentation","DOM","method",name)) q:name="" d
. s no=no+1
. 8 list(no,"optionText")=name

d deleteFromSession"%zewdAPI("list",sessid)

d mergeArrayToSession”%zewdAPI(.list,"list",sessid)
d saveListToSession"%zewdSTAPI(.list,"listOfAPIs",sessid)

QUIT nn

What this will do is to persist a copy of the options array in the user’s session and then
save it as an EWD Session Array named /isz. Note that the Session array is first cleared
down in case it already had anything in it. In this example this step isn’t strictly required,
but it’s a good practice to always adopt when using the mergeArrayToSession API.

Now we can add the pre-page script for our apiDetails page to "stdemo as follows:

getAPIDetails(sessid)
n list,no,name

s no=3getRequestValue"%zewdAPI("listltemNo",sessid)
d mergeArrayFromSession”%zewdAPI(.list,"list",sessid)
s name=$g(list(no,"optionText"))

d setSessionValue"%zewdAPI("apiName",name,sessid)

QUIT "nn

>

Lets examine what this function will do:

» [t gets the value of the list/ltemNo name/value pair using EWD’s
getRequestValue() API

* [t then retrieves the original list of options from the EWD Session, by using the
mergeArrayFromSession() method (this basically reverses the action of the
mergeArrayToSession() method that was used in getAPIList())

* Now it can retrieve the name for the selected API from the options array by using
the list number that was sent by EWD

* We then save that name as an EWD Session value named apiName. We can then
refer to that name in the fragment’s markup.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.
Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
25

One last step: we want to display the value of the Session variable (apiName) that was
created in the pre-page script function.. Edit apiDetails.ewd:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getAPIDetails"stdemo">

<st:panel id="apiDetails">
<div>
You selected the API named <?= #apiName ?>
</div>

</st:panel>

Save all the files, recompile the stdemo application and run it again. Now when you tap
an API in the List, the apiDetails panel that slides into view should confirm the one you
tapped:

/

Carrier = 10:22 AM

sack ~EWD Demo

\

List

laddJavascriptFunction

R v

We now have a simple, but fully-functional menu that is driven by data held in GT.M or
Caché!

Let’s just add one final enhancement: we’ll retrieve the purpose of the selected API from
the ~%zewd Global and display it in the apiDetails panel. Simply edit the
getAPIDetails() function in the "stdemo routine:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
26

getAPIDetails(sessid)
n desc,list,no,name

s no=$$getRequestValue”%zewdAPI("listitemNo",sessid)

d mergeArrayFromSession"%zewdAPI(.list,"list",sessid)

s name=$g(list(no,"optionText"))

d setSessionValue"%zewdAPI("apiName",name,sessid)

s desc=$g("%zewd("documentation","DOM","method",name,"purpose"))

d setSessionValue"%zewdAPI("apiPurpose",desc,sessid)

bUIT "nn

>

Now edit the apiDetails.ewd page:

<ewd:config isFirstPage="false" pageType="ajax" prepagescript="getAPIDectails"stdemo">
<st:panel id="apiDetails">
<div>
<div>
API: <?=#apiName 7>
</div>

<div>
Purpose: <?= #apiPurpose 7>
</div>
</div>
</st:panel>

Save, recompile and re-run the application. Finally we have a proper and useful
application that retrieves real details from your GT.M or Cache database in response to
the user selecting from a menu:

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
27

Carrier = 10:34 AM
t‘ Back EWD Demo
List

API: attributeExists

Purpose: Tests whether or not the
specified element contains the

specified attribute

A 4

You now have enough knowledge to begin building mobile applications that can allow a
user to navigate through lists of data and then retrieve and display related information.
Try modifying the examples to use and display some of your own data.

That completes Part 2 of our EWD/Sencha Touch Tutorial. In Part 3 we’ll introduce
more widgets including forms and we’ll take a closer look at the mechanics of the EWD
Session.

EWD : Sencha Touch Custom Tags Tutorial Part 2. Build 846: 10 Febuary 2011.

Copyright (12011, M/Gateway Developments Ltd. All Rights Reserved
28

	EWD
	Using the Sencha Touch Custom Tags for Mobile Applications
	Build 846

