
EWD ExtJS 4
Custom Tag Guide

M/Gateway Developments Ltd 	 	 http://www.mgateway.com

M/Gateway Developments Ltd

http://www.mgateway.com
http://www.mgateway.com

Table of Contents

Introduction
 1

Background
 1

EWD ExtJS v4 Custom Tags: General Features
 1

Container Pages and Fragments
 1

ExtJS Custom Tags
 2

Working from the ExtJS v4 Examples
 6

ExtJS Custom Tag Definitions
 8

Installation and Configuration
 9

Installing the ExtJS v4 Tag Library
 9

Configuring EWD for use with ExtJS v4
 9

The <ext4:container> Tag
 10

The <ext4:fragment> Tag
 11

A Simple Hello World Application
 12

Pre-requisites
 12

Hello World version 1
 12

Hello World Analysed
 13

Creating your own Pointers to ExtJS Widgets
 14

Generating the Hello World Panel Contents Dynamically
 15

Nesting Panels
 16

Adding Panels using Fragments
 17

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)
 i

Using Javascript with ExtJS
 18

Using Listeners
 18

Using Explicitly-added Javascript
 19

Requesting and Fetching Fragments
 21

The EWD.ajax.getPage() Function
 21

Preventing Unauthorised Use
 22

The NextPage Attribute
 23

ExtJS Layouts
 25

Layouts
 25

ExtJS Documentation Example
 25

Layout Sub-components
 28

Toolbars
 30

Defining a Toolbar & Buttons
 30

Formatting the Toolbar
 32

Button Menus
 33

Static Button Menus
 33

Multi-level Static Menus
 34

Adding Interactivity to Menu Items
 34

Dynamically-defined Button Menus
 35

Adding Interactivity to Dynamic Button Menus
 35

Dynamically Defining Multi-level Button Menus
 36

Identifying the Clicked Menu Item
 36

Tools
 37

Menus
 39

Menu Types
 39

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)
 ii

Menus
 39

Tree Menus
 39

Combining a Tree Panel with a Layout
 40

Tab Panels
 44

Defining a Tab Panel
 44

An Example
 44

Adding Dynamic Behaviour
 45

Windows
 47

ExtJS Windows
 47

Simple Example
 47

Modal Windows
 48

Grids
 49

ExtJS Grids
 49

Simple Example
 49

Dynamic Columns
 50

Identifying the Grid and Store
 51

Special Column Types
 52

Explicity-defined Example
 52

Dynamically-defined Example
 54

Editable Grids
 56

The Editor Tag
 56

Editing using the TextField Editor
 56

Using Dynamically-defined Columns
 58

Numberfield Editor
 59

Datefield Editor
 59

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)
 iii

Combobox Editor
 60

Grouping
 62

Forms
 63

ExtJS Forms
 63

Text Fields
 63

Date Fields
 66

Time Fields
 67

Number Fields
 68

Display Fields
 69

Hidden Fields
 69

Slider Fields
 70

Radio Fields
 70

Dynamically-defined Radio Fields
 71

Checkbox Fields
 71

Dynamically-defined Checkboxes
 73

Combobox Fields
 73

MultiSelect Combobox Field
 74

Textarea Fields
 74

HTMLEditor Fields
 75

The ExtJS Desktop
 77

Demystifying the ExtJS Desktop
 77

A Simple Desktop
 77

The Logout Option
 79

Defining a UserName
 79

Adding a Login Mechanism
 80

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)
 iv

Customising & Extending the Desktop
 81

Window Contents
 81

Positioning Icons
 81

Quickstart Icon
 81

Desktop Icons
 82

Window Icons
 82

Desktop Wallpaper
 82

Dynamically-defined Desktop
 83

Charts
 84

ExtJS Charts
 84

The <ext4:chart> Tag
 84

A simple Line Plot
 84

Animation and Fills
 86

Adding a Second Line
 86

Embedding a Chart in a Panel
 88

Using Charts With Fragments
 88

Adding a background
 89

Adding A Legend
 89

Adding Tips
 90

Adding Listeners to Fetch Other Fragments
 91

Area Charts
 93

Bar Charts
 95

Grouped Bar Charts
 95

Stacked Bar Charts
 96

Coumn Charts
 97

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)
 v

Grouped Column Charts
 97

Stacked Column Charts
 98

Rotating Axis Labels
 99

Gauge Charts
 100

Pie Charts
 101

Radar Charts
 103

Scatter Charts
 105

Dynamically-Defined Charts
 106

Drawing
 110

The <ext4:draw> and <ext4:sprite> Tags
 110

Appendix 1: Installing EWD
 112

Installing EWD
 112

GT.M
 112

Caché
 112

Configuring EWD
 112

Caché & CSP
 113

1a) Simple Default Configuration
 113

1b) Custom Configuration
 113

2) Define CSP Application
 113

Caché & WebLink
 114

GT.M
 115

Creating EWD Pages
 115

Running EWD Applications
 116

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)
 vi

Introduction

Background

Enterprise Web Developer (EWD) is a framework for rapidly building web applications that integrate
with the Caché and GT.M databases. An important and powerful feature of EWD is its Custom Tags:
these can be used to abstract and simplify the use of Javascript frameworks. This has two key
benefits:

- reducing the learning curve of what are often complex and poorly-documented frameworks

- replacing programming code with a tag-based development framework. It is generally
recognised that HTML and XML tags are a lot easier to read, understand and maintain than
programming code.

This document describes one such EWD Custom Tag Library, which abstracts the ExtJS version 4
framework.

EWD ExtJS v4 Custom Tags: General Features

Container Pages and Fragments
The EWD ExtJS v4 Custom Tags introduce a new convention and shortcut to EWD: an abbreviated
way to define Container Pages and Fragments.

A Container Page is the initial complete page of HTML that is loaded into the browser and which remains in place through-
out the user’s session. Fragments are chunks of dynamically-generated markup that are injected into the container page
(using AJAX/DOM techniques) and/or dynamically-generated Javascript or JSON code that is pulled into the Container
Page’s Javascript environment and automatically invoked.

You no longer have to add an <ewd:config> tag to the top of your pages and fragments, and you no
longer need to specify any of the <html>, <body> and <head> markup tags in your container page.

Instead, you simply define a Container Page by using the <ext4:container> tag and a Fragment using
the <ext4:fragment> tag. EWD’s compiler will generate the appropriate <ewd:config> tag
automatically for you, and will create all the necessary markup for your container pages.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 1

When you’re using the EWD ExtJS tags you will rarely want or need to specify any traditional HTML
markup: everything you’ll need to do will be using the new ExtJS v4 tags inside either
<ext4:container> or <ext4:fragment> tags. Your EWD pages and fragments will now be even more
succinct, readable and maintainable.

A typical example of a container page is shown below:

<ext4:container rootPath="/vista/ext-4">
 <ext4:window title="Resize Me" height="300" width="500" minWidth="300" minHeight="200" layout="fit"
plain="true" hidden="false">

 <ext4:formPanel border="false" bodyPadding="5">
 <ext4:fieldDefaults labelWidth="55" />
 <ext4:textfield fieldLabel="Send To" name="to" anchor="100%" />
 <ext4:textfield fieldLabel="Subject" name="subject" anchor="100%" />
 <ext4:textareafield hideLabel="true" name="msg" anchor="100% -47" />
 </ext4:formPanel>

 <ext4:toolbar dock="bottom" ui="footer">
 <ext4:fill />
 <ext4:button text="Send" />
 <ext4:button text="Cancel" />
 </ext4:toolbar>
 </ext4:window>
</ext4:container>

and a typical fragment:

<ext4:fragment onBeforeRender="getGridData^Ext4Demo">

 <ext4:gridPanel title="Simpsons" height="200" width="600" columnDefinition="colDef" sessionName="simpsons" stor-
eId="myStore" clicksToEdit="1" validationPage="gridValidateTest" />

</ext4:fragment>

Note the onBeforeRender attribute in the example above. This replaces the prePageScript attribute
but is 100% analogous to it: the onBeforeRender attribute specifies the back-end Caché or GT.M
method that is to be invoked before the contents of the container page or fragment is rendered and
dispatched to the browser.

ExtJS Custom Tags
The EWD ExtJS v4 Custom Tags are designed to correspond directly to the ExtJS v4 API. For this
reason, it is recommended that the developer makes use of the ExtJS v4 API documentation at:

http://docs.sencha.com/ext-js/4-0/#!/api

In general, every EWD ExtJS v4 Custom Tag represents either:

- a corresponding ExtJS class

- an ExtJS config option that is represented as an array of objects

- an object that corresponds to an ExtJS config option

- an ExtJS class that is embedded inside another, typically as one of its item objects

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 2

http://docs.sencha.com/ext-js/4-0/#!/api
http://docs.sencha.com/ext-js/4-0/#!/api

For example, the <ext4:panel> tag represents the ExtJS v4 Ext.panel.Panel class.

All the simple string (ie name/value pair) Config Options in an ExtJS class are represented as a
correspondingly named attribute in the EWD Custom tag. For example:

 <ext4:panel title="Hello" width="200" height="400" html="Hello World!" />

represents the following ExtJS v4 construct:

Ext.create('Ext.panel.Panel', {
 title: 'Hello',
 width: 200,
 height: 400,
 html: 'Hello World!'
});

Some of the ExtJS v4 class Config Options have values that are objects, arrays or arrays of objects.
A number of these are very common and are used by many or most of the ExtJS classes. Examples
include:

• items
• defaults
• dockedItems
• listeners
• layout

EWD provides a standard set of techniques for handling these.

defaults is an example of Config Option whose value is an object. For example:

 Ext.create("Ext.container.Viewport", {
 layout: "border",
 defaults: {
 collapsible: true,
 split: true
 },
 ...etc
 }

Any Config Option that has an object as a value is represented as its own EWD tag, and is nested
inside the parent tag that represents the class. So, for example, the above construct would be
represented, in EWD’s ExtJS v4 tags as:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 3

http://docs.sencha.com/ext-js/4-0/#!/api/Ext-method-create
http://docs.sencha.com/ext-js/4-0/#!/api/Ext-method-create
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.panel.Panel
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.panel.Panel

 <ext4:viewPort layout="border">
 <ext4:defaults collapsible="true" split="true" />
 </ext4:viewPort>

items, tools, bbar, tbar are examples of Config Options whose values are an array of objects. The
general rule is that each of these can be represented as a corresponding tag (which takes no
attributes) that represents the Config Option name, inside of which are child tags representing each
object within the array, eg:

 <ext4:panel title="My Window" height="450" width="600">
 <ext4:bbar>
 <ext4:item xtype="button" text="Button 1" />
 <ext4:item xtype="button" text="Button 2" />
 </ext4:bbar>
 </ext4:panel>

In fact, in most cases, EWD also provides a higher-level child tag that automatically knows what
Config Option tag it should be enclosed inside. So the following example which creates two panels,
one nested inside the other:

 <ext4:panel title="My Window" height="450" width="600">
 <ext4:items>
 <ext4:item xtype="panel" title="Panel 2" />
 </ext4:items>
 </ext4:panel>

could also be represented more succinctly and more readably as:

 <ext4:panel title="My Window" height="450" width="600">
 <ext4:panel title="Panel 2" />
 </ext4:panel>

The inner <ext4:panel> tag knows to create itself as an item object with an xtype of “panel” inside an
items Config Option. Both examples generate the same ExtJS Javascript:

 Ext.create("Ext.panel.Panel", {
 height: 450,
 title: "My Window",
 width: 600,
 items: [{
 title: "Panel 2",
 xtype: "panel"
 }]
 });

You can nest EWD ExtJS v4 tags to whatever depth you require, and the compiler will generate the
correctly-structured code with items inside items to any depth.

As you can imagine, whilst deeply-nested ExtJS code can quickly become difficult to read and
understand in terms of the widgets being used, the EWD abstraction into nested, intuitively-named
XML tags retains readability (and hence maintainability).

Some of the EWD ExtJS v4 tags provide additional EWD-specific attributes that do not map to any
ExtJS Config Options, but instead automate EWD-specific functionality such as integration with the

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 4

back-end Cache or GT.M database. For example the <ext4:gridPanel> tag not only represents the
Ext.grid.Panel class, it also allows you to use attributes that allow you to define the grid contents and/
or its column definitions in EWD Session Arrays. If these attributes are used, EWD will generate the
grid dynamically at render time using the EWD Session Array contents.

Furthermore, the values of all attributes can be replaced with EWD Session values by using the syntax
#, eg to use the value of an EWD Session value named message:

 <ext4:panel html="#message" />

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 5

Working from the ExtJS v4 Examples
The EWD ExtJS v4 tags are designed so that any of the ExtJS v4 examples (http://docs.sencha.com/
ext-js/4-0/#!/example) can be represented as a corresponding set of EWD tags. In most cases the
key is understanding what the nested items represent. Where the xtype is explicitly defined in the
example, this is not too difficult, but many examples make use of the implicitly-defined default xtype
which makes it tricky to understand what’s going on.

Sometimes the value of a nested widget will be separately defined as an object, and the name of/
reference to that object will be used as the Config Option value instead.

For example, take a look at the Anchor Layout ExtJS example at http://docs.sencha.com/ext-js/4-0/
#!/example/form/anchoring.html

If you click on the link for the Javascript source code, you’ll see the core of it is as follows:

 Ext.onReady(function() {
 var form = Ext.create('Ext.form.Panel', {
 border: false,
 fieldDefaults: {
 labelWidth: 55
 },
 url: 'save-form.php',
 defaultType: 'textfield',
 bodyPadding: 5,

 items: [{
 fieldLabel: 'Send To',
 name: 'to',
 anchor:'100%' // anchor width by percentage
 },{
 fieldLabel: 'Subject',
 name: 'subject',
 anchor: '100%' // anchor width by percentage
 }, {
 xtype: 'textarea',
 hideLabel: true,
 name: 'msg',
 anchor: '100% -47' // anchor width by percentage and height by raw adjustment
 }]
 });

 var win = Ext.create('Ext.window.Window', {
 title: 'Resize Me',
 width: 500,
 height:300,
 minWidth: 300,
 minHeight: 200,
 layout: 'fit',
 plain: true,
 items: form,

 buttons: [{
 text: 'Send'
 },{
 text: 'Cancel'
 }]
 });

 win.show();
});

Like many of the official ExtJS examples, this example is rather confusing in many ways. It can
actually be represented using EWD tags as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 6

http://docs.sencha.com/ext-js/4-0/#!/example
http://docs.sencha.com/ext-js/4-0/#!/example
http://docs.sencha.com/ext-js/4-0/#!/example
http://docs.sencha.com/ext-js/4-0/#!/example
http://docs.sencha.com/ext-js/4-0/#!/example/form/anchoring.html
http://docs.sencha.com/ext-js/4-0/#!/example/form/anchoring.html
http://docs.sencha.com/ext-js/4-0/#!/example/form/anchoring.html
http://docs.sencha.com/ext-js/4-0/#!/example/form/anchoring.html

 <ext4:window title="Resize Me" height="300" width="500" minWidth="300" minHeight="200" layout="fit"
plain="true" hidden="false">

 <ext4:formPanel border="false" bodyPadding="5">
 <ext4:fieldDefaults labelWidth="55" />
 <ext4:textfield fieldLabel="Send To" name="to" anchor="100%" />
 <ext4:textfield fieldLabel="Subject" name="subject" anchor="100%" />
 <ext4:textareafield hideLabel="true" name="msg" anchor="100% -47" />
 </ext4:formPanel>

 <ext4:buttons>
 <ext4:button text="Send" />
 <ext4:button text="Cancel" />
 </ext4:buttons>

 </ext4:window>

This is perhaps a surprisingly succinct abstraction of the ExtJS original, and it may not be immediately
obvious how this abstraction is derived from the original example:

- by using hidden=”false” in the <ext4:window> tag, we can avoid the need to explicitly invoke the
window’s show() method (win.show())

- in the original example code, the formPanel is unnecessarily defined as a separate object and
then referenced as the value of the window’s items Config Option (items: form). In the EWD tag
abstraction, we just need to nest an <ext4:formPanel> tag inside the <ext4:window> tag and it
will automatically create the equivalent Javascript code. The EWD abstraction is immediately
much more readable and understandable.

- in the original example code, the definition of the form fields inside the form panel is not very
clear. In part this is because it relies on a fieldDefaults Config Option which specifies that each of
the item objects inside the FormPanel’s items Config Option is a textfield. In the EWD
abstraction, we specifically define the field type explicitly via the tag name:

oext4:textField

oext4:textAreaField

- As a result, we’ve not needed to use an <ext4:fieldDefaults> tag, and it’s much clearer what this
example is going to do.

The buttons Config Option is actually a convenience alternative for the dockedItems Config Option,
and we could rewrite our example as follows:

 <ext4:window title="Resize Me" height="300" width="500" minWidth="300" minHeight="200" layout="fit"
plain="true" hidden="false">

 <ext4:formPanel border="false" bodyPadding="5">
 <ext4:fieldDefaults labelWidth="55" />
 <ext4:textfield fieldLabel="Send To" name="to" anchor="100%" />
 <ext4:textfield fieldLabel="Subject" name="subject" anchor="100%" />
 <ext4:textareafield hideLabel="true" name="msg" anchor="100% -47" />
 </ext4:formPanel>

 <ext4:toolbar dock="bottom" ui="footer">
 <ext4:fill />
 <ext4:button text="Send" />
 <ext4:button text="Cancel" />
 </ext4:toolbar>

 </ext4:window>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 7

This is functionally identical to the original use of the <ext4:buttons> and <ext4:button> tags. Which
alternative you use is down to you: you need to decide which is the more intuitive, readable and
maintainable alternative.

ExtJS Custom Tag Definitions
The EWD ExtJS Custom Tags also introduce a new and highly abstracted way of defining Custom
Tags that are ultimately converted into Javascript. You can see the list of available tags and the
JSON-based abstracted description of how they are processed by looking at the routine file
_zewdExt4Map.m in the EWD GitHub Repository at:

	 https://github.com/robtweed/EWD

A description of the JSON abstracted tag definition conventions that have been used are beyond the
scope of this current document, but advanced EWD developers should be aware that they can
extend the tag set by adding further JSON-based definitions to the global:

- ^zewd(”mappingObject”,”ext4”)

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 8

https://github.com/robtweed/EWD
https://github.com/robtweed/EWD

Instal lation and Configuration

Installing the ExtJS v4 Tag Library
The EWD ExtJS v4 Custom Tags are incorporated into EWD Build 918 and later. All you need to do is to install the ExtJS v4
Javascript library from the Sencha Site:

http://www.sencha.com/products/extjs/

Where you install ExtJS v4 is up to you, but it must be in a directory path that is accessible to your Web Server.

Configuring EWD for use with ExtJS v4
Configuration is very simple: in the <ext4:container> tag of your applications, you must specify the root web-server path that
points to the directory path where you’ve installed the ExtJS v4 Javascript library, eg if you are using the dEWDrop VM
(http://www.fourthwatchsoftware.com/) and you install ExtJS v4 in the physical path:

	 /home/vista/www/ext-4

then because the physical path /home/vista/www is mapped in the Apache configuration file to the alias /vista, the
<ext4:container> tags in your EWD ExtJS v4 applications will look like this:

 <ext4:container rootPath="/vista/ext-4">
 etc
 </ext4:container>

The examples used in this document will all use the above rootPath. You should adjust your
examples accordingly to reflect the location you’ve used for the ExtJS v4 Javascript files.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 9

http://www.sencha.com/products/extjs/
http://www.sencha.com/products/extjs/
http://www.fourthwatchsoftware.com/
http://www.fourthwatchsoftware.com/

The <ext4:container> Tag
The first page of your ExtJS v4 applications should be defined inside an <ext4:container> tag. This tag will automatically
create a standard EWD first page: during compilation it automatically generates an <ewd:config> tag as follows:

 <ewd:config isFirstPage="true" cachePage="false">

The <ext4:container> tag has the following attributes:

Attribute Purpose Default Value
rootPath Specifies the web-server alias path to

the Sencha ExtJS v4 Javascript library
files

/ext-4/

jsVersion Optionally specifies the ExtJS
Javascript file to load into the browser.
Under most circumstances just accept
the default, but this attribute allows you
to optionally load the debug version, eg:

jsVersion=”ext-all-debug.js”

“ext-all.js”

appName Optionally allows you to specify an
application name. This is used in the
Ext.application() function call that is
generated by EWD.

“Ext4App”

title Optionally specified the value to be
used in the container page’s generated
<title> attribute

“ExtJS 4 Application”

enableLoader Optionally allows you to enable the
ExtJS library loader. If set to true, EWD
will add the code:

Ext.Loader.setConfig({enabled:true})

false

onBeforeRender Optionally specifies a Caché Class
Method or Extrinsic Function, or a GT.M
Extrinsic Function that should be
invoked prior to generating and
rendering the container page contents.

The onBeforeRender function is
functionally identical to a prePageScript.
It should have a single argument
(sessid) and, if no error is to be
automatically triggered, should QUIT
with a null string as its returnValue.

Not applicable

If not specified, no back-end function will be invoked.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 10

The <ext4:fragment> Tag
All fragments of your ExtJS v4 applications should be defined inside an <ext4:fragment> tag. During compilation, EWD
automatically generates an <ewd:config> tag as follows:

 <ewd:config isFirstPage="false" pageType="ajax">

The <ext4:fragment> tag has the following attributes:

Attribute Purpose Default Value
onBeforeRender Optionally specifies a Caché Class

Method or Extrinsic Function, or a GT.M
Extrinsic Function that should be
invoked prior to generating and
rendering the fragment’s contents.

The onBeforeRender function is
functionally identical to a prePageScript.
It should have a single argument
(sessid) and, if no error is to be
automatically triggered, should QUIT
with a null string as its returnValue.

Not applicable

If not specified, no back-end function will be invoked.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 11

A Simple Hello World Application

Pre-requisites
In this chapter, we’ll create a simple Hello World application, using an ExtJS Panel widget.

It is assumed that you’ve installed and configured EWD (See Appendix 1). Make sure you’ve installed Build 918 or later.

Hello World version 1
Create an EWD application directory named ext4 and create a file named helloworld1.ewd that contains the following:

<ext4:container rootPath="/vista/ext-4">
 <ext4:panel title="Hello World Panel" html="Hello World" />
</ext4:container>

Save this file and compile it. For example, if you’re running the GT.M-based dEWDrop VM, you’d type:

vista@dEWDrop:~$ mumps -dir

MU-beta>d compilePage^%zewdAPI("ext4","helloworld1")
/home/vista/www/ewd/ext4/ewdAjaxError.ewd
/home/vista/www/ewd/ext4/ewdAjaxErrorRedirect.ewd
/home/vista/www/ewd/ext4/ewdErrorRedirect.ewd
/home/vista/www/ewd/ext4/helloworld1.ewd

MU-beta>

Then start a browser, eg Chrome, and enter the appropriate URL to start it up. For example, if the dEWDrop VM is
accessible at the IP address: 192.168.1.111, you’d use the URL:

	 http://192.168.1.111/vista/ext4/helloworld1.ewd

You should see something like the following:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 12

http://192.168.1.111/vista/ext4/helloworld1.ewd
http://192.168.1.111/vista/ext4/helloworld1.ewd

If you see this, then your EWD and ExtJS v4 environment is working correctly. You’ve just created an ExtJS-based web
application.

Hello World Analysed
What you’ve created is an ExtJS v4 Panel. Let’s examine what you’ve created in some more detail. If you grab the source
for the container page, you’ll find that your three lines of EWD tags has been converted into a quite substantial page of
HTML and Javascript. The critical part to examine is the main Javascript <script> tag that contains the following:

EWD.ext4 = {
 submit: function (formPanelId, nextPage, addTo, replace) {
 var nvp = '';
 var amp = '';
 Ext.getCmp(formPanelId).getForm().getFields().eachKey(

 function (key, item) {
 if ((item.xtype !== 'radiogroup') && (item.xtype !== 'checkboxgroup')) {
 var value = '';
 if (item.xtype === 'htmleditor') {
 value = item.getValue();
 } else {
 if (item.getSubmitValue() !== null) value = item.getSubmitValue();
 }
 nvp = nvp + amp + item.getName() + '=' + value;
 amp = '&';
 }
 });
 if (addTo !== '') nvp = nvp + '&ext4_addTo=' + addTo;
 if (replace === 1) nvp = nvp + '&ext4_removeAll=true';
 EWD.ajax.getPage({
 page: nextPage,
 nvp: nvp
 })
 }
};
Ext.application({
 name: 'ext4',
 launch: function () {
 EWD.ext4.content()
 }
});
EWD.ext4.content = function () {
 Ext.create("Ext.panel.Panel", {
 html: "Hello World",
 id: "panelhelloworld15",
 renderTo: Ext.getBody(),
 title: "Hello World Panel"
 });
}

You may find it useful to use the Online Javascript Beautifier (http://jsbeautifier.org/) to unpack and lay out the generated
Javascript as shown above, to make it more readable.

Of the generated code shown above, the really important part is the following:

 Ext.create("Ext.panel.Panel", {
 html: "Hello World",
 id: "panelhelloworld15",
 renderTo: Ext.getBody(),
 title: "Hello World Panel"
 });

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 13

http://jsbeautifier.org/
http://jsbeautifier.org/

This is the ExtJS Javascript code that was specifically generated from your original <ext4:panel> tag. You’ll see that your
html and title attributes have been converted into corresponding object properties, and EWD’s compiler has added two
further attributes: id and renderTo. EWD assumed that you wanted the main panel rendered automatically in the document’s
<body> section, and added an id so that the panel widget could be uniquely identified using:

 Ext.getCmp("panelhelloworld15");

Creating your own Pointers to ExtJS Widgets
It is much more practical to provide our own id value, since we’ll not easily be able to predict the id value that EWD will
otherwise automatically assign. You can do this very simply by editing the EWD page as follows:

<ext4:container rootPath="/vista/ext-4">
 <ext4:panel title="Hello World Panel" html="Hello World" id="helloWorld" />
</ext4:container>

If you recompile this page, run it in the browser again and view the source, you’ll see that the code has now changed to:

 Ext.create("Ext.panel.Panel", {
 html: "Hello World",
 id: "helloWorld",
 renderTo: Ext.getBody(),
 title: "Hello World Panel"
 });

Another way to obtain a pointer to the panel widget is to specify an object reference for the panel:

<ext4:container rootPath="/vista/ext-4">
 <ext4:panel title="Hello World Panel" html="Hello World" id="helloWorld"
object="myPanel" var="true" />
</ext4:container>

Compile, re-run and view the source, and you’ll see that the generated code for the panel widget has now changed to:

 var myPanel = Ext.create("Ext.panel.Panel", {
 html: "Hello World",
 id: "helloWorld",
 renderTo: Ext.getBody(),
 title: "Hello World Panel"
 });

The attribute var=”true” told the compiler to scope the object name (myPanel) using a var command. The panel can now be
referenced either using the variable myPanel or the function Ext.getCmp(‘helloworld’). If you omit the var=”true” attribute or
specify var=”false”, then the object is declared as a global variable, ie:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 14

 myPanel = Ext.create("Ext.panel.Panel", {
 html: "Hello World",
 id: "helloWorld",
 renderTo: Ext.getBody(),
 title: "Hello World Panel"
 });

It is generally recommended that in most circumstances, you should specify var=”true”.

Generating the Hello World Panel Contents Dynamically
Dynamic content is generated in EWD applications using the onBeforeRender function. Basically it’s a two-step approach:

- write a Cache or GT.M function that creates and/or gets data (eg from the database)

- save that data into the EWD Session as simple variables or multi-dimensional arrays

The EWD tags can then make use of data in the EWD Session. Some of the EWD ExtJS v4 tags automatically know how to
use data stored in EWD Session Arrays, but simple EWD Session Variables can be used as the value of any ExtJS tag
attribute. The latter capability is very simple: instead of using a quoted literal value, just add a # symbol at the start of the
value, eg:

<ext4:container rootPath="/vista/ext-4">
 <ext4:panel title="Hello World Panel" html="#hello" id="helloWorld"
object="myPanel" var="true" />
</ext4:container>

In the example above, we’ve substituted the literal value for the html attribute with a reference to an EWD Session Variable
named hello. In effect, what this is saying is: the value of the html attribute will be whatever is currently held in an EWD
Session Variable named hello.

What’s missing from the example above is the means by which the EWD Session variable named hello is created. We
therefore need to add an onBeforeRender attribute to the <ext4:container> tag, eg:

<ext4:container rootPath="/vista/ext-4" onBeforeRender="getHello^ext4Demo" >
 <ext4:panel title="Hello World Panel" html="#hello" id="helloWorld"
object="myPanel" var="true" />
</ext4:container>

In the example above, a GT.M function named getHello() from a routine file named ext4Demo will be invoked before the
Container Page is generated and rendered. This function could look something like this:

getHello(sessid) ;
 d setSessionValue^%zewdAPI("hello","Hello World! This is GT.M",sessid)
 QUIT ""

If you’re using the dEWDrop VM, you can create this using a text editor. Save it as /home/vista/p/ext4Demo.m

Recompile the new version of helloworld1.ewd and re-run the URL again. It should now look like this:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 15

There’s the text we defined in the onBeforeRender method!

In the getHello() function above, the value is being defined as a string literal, but of course it could have been the result of a
database query.

We could make the panel title dynamic also:

<ext4:container rootPath="/vista/ext-4" onBeforeRender="getHello^ext4Demo" >
 <ext4:panel title="#myTitle" html="#hello" id="helloWorld" object="myPanel"
var="true" />
</ext4:container>

getHello(sessid) ;
 d setSessionValue^%zewdAPI("hello","Hello World! This is GT.M",sessid)
 d setSessionValue^%zewdAPI("myTitle","My Dynamic Panel",sessid)
 QUIT ""

Save the EWD page and routine files as amended above and recompile the EWD page, and you should now see:

Nesting Panels
Although you can mix standard HTML markup with ExtJS widgets, ExtJS is really designed to be self-contained and most UI
effects you’ll need can be achieved using ExtJS widgets and their APIs.

The Panel is probably the most basic UI unit in ExtJS: you’ll find that you’ll be using them all over the place in many different
ways. Panels can be nested inside each other and alongside others. So let’s extend our simple Hello World application to
demonstrate how this can be done.

EWD makes it extremely simple and intuitive, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 16

<ext4:container rootPath="/vista/ext-4" onBeforeRender="getHello^ext4Demo" >
 <ext4:panel title="Outer Panel" id="helloWorld1" object="myPanel" var="true">
 <ext4:panel title="#myTitle" html="#hello" id="helloWorld2" width="400"
height="100" />
 </ext4:panel>
</ext4:container>

This creates the following:

Adding Panels using Fragments
ExtJS allows you to achieve the same effect dynamically using Javascript. Panels expose an add() method that can be used
to dynamically add one panel to another. EWD’s ExtJS v4 tags automatically use this mechanism when you use Fragments
to inject new dynamically-generated widgets into what’s already being displayed in your Container Page.

So, for example, we could rewrite the previous example using a Container Page and Fragment as follows:

Container Page: helloworld4.ewd

<ext4:container rootPath="/vista/ext-4">
 <ext4:panel title="Outer Panel 2" id="helloWorld1" object="myPanel" var="true"
addPage="hwFragment4a" />
</ext4:container>

Fragment: hwFragment4a.ewd

<ext4:fragment onBeforeRender="getHello^ext4Demo">
 <ext4:panel title="Inner Injected Panel" html="#hello" id="helloWorld2"
width="400" height="100" />
</ext4:fragment>

The key attribute is addPage. This does two things:

- asks EWD to fetch the fragment named hwFragment4a.ewd

- after this fragment is rendered, the add() method is invoked for the panel owning the addPage attribute. The panel
that is added is the outer one in the fragment being fetched.

So, if the fragment contained a pair of nested panels, they’ll be added to the Container Page’s panel, eg see what happens if
you edit hwFragment4a.ewd as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 17

<ext4:fragment onBeforeRender="getHello^ext4Demo">
 <ext4:panel title="Outer Injected Panel" id="helloWorld2" width="400"
height="100">
 <ext4:panel title="Inner Injected Panel" html="#hello" />
 </ext4:panel>
</ext4:fragment>

The addPage attribute can be used with most ExtJS component widgets. By default, the fragment that is fetched will be
added along with any other panels (or other component widgets) that have been previously added. However, if you also
include the attribute replacePreviousPage=”true”, then the fetched fragment will replace any previously added fragment
panels (or other component widgets).

Using Javascript with ExtJS
There are two ways in which you can use Javascript in conjunction with EWD’s ExtJS tags:

- using widget-specific listeners

- using explicitly added Javascript code within Fragments

Using Listeners
Listeners should be used whenever possible and applicable: they provide the most elegant approach. The events that are
available for each ExtJS widget or component is fully documented. To add a listener, just add an <ext4:listeners> tag inside
the ExtJS widget tag, with one or more event-specific <ext:listener> tag inside. For example, panels include a render event
that will fire when the panel is rendered. You’ll find it documented under the Events section of the API documentation for
Ext.panel.Panel as follows:

To make use of this in our example, we could edit the hwFragment4a.ewd fragment as follows:

<ext4:fragment onBeforeRender="getHello^ext4Demo">
 <ext4:panel title="Outer Injected Panel" id="helloWorld2" width="400"
height="100">
 <ext4:panel title="Inner Injected Panel" html="#hello">
 <ext4:listeners>
 <ext4:listener render="alert('Rendered!')" />
 </ext4:listeners>
 </ext4:panel>
 </ext4:panel>
</ext4:fragment>

Most listeners have parameters that may be used by your function. To make use of these, you need to replace the
abbreviated render function that we’ve used in the example above with a full function specification. The documentation for
the render event shows it has two parameters: this and eOpts. this provides a pointer to the panel that owns the listener.
So, we could enhance the example above as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 18

<ext4:fragment onBeforeRender="getHello^ext4Demo">
 <ext4:panel title="Outer Injected Panel" id="helloWorld2" width="400"
height="100">
 <ext4:panel title="Inner Injected Panel" id="myInnerPanel" html="#hello">
 <ext4:listeners>
 <ext4:listener render="function(panel,eopts) {alert(panel.id + ' ren-
dered!');}" />
 </ext4:listeners>
 </ext4:panel>
 </ext4:panel>
</ext4:fragment>

Now our render listener has access to the panel object, so we can display its id property which we’ve defined to be the
literal text “myInnerPanel”. So when the example above is run, we’ll see the following alert appear:

Note: if your listener logic is lengthy, it is recommended that you define it as a separate function in a static .js file, and invoke
that function from within the <ext4:listener> tag. Long attribute values containing Javascript logic can quickly reduce the
readability (and hence the maintainability) of EWD pages or fragments For example the alert logic could be defined
separately in a function named alertMe(), allowing us to reduce the render attribute to the following:

<ext4:listener render="function(panel,eopts) {alertMe(panel);}" />

The <ext4:listeners> tag is available for use with any ExtJS tag that maps to a corresponding ExtJS component widget for
which documented Events exist.

Using Explicitly-added Javascript
In some situations, it’s more appropriate to add explicit blocks of Javascript code to your Fragments. You can specify
whether your block of Javascript code is to be added before or after any generated ExtJS Javascript code.

Note: to ensure maximum readability and maintainability of your pages and fragments, you should endeavour to use static
Javascript, defined in static .js files, whenever possible. In-line Javascript blocks within your fragments should be restricted

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 19

to logic that has to be dynamically defined at run-time, providing, for example, a specific and probably different value each
time a fragment is rendered.

Static Javascript files can be requested and loaded into your Container page using a standard <script> tag, eg:

<ext4:container rootPath="/vista/ext-4">
 <script src="/vista/js/ext4Demo.js" />
 <ext4:panel title="Outer Panel 2" id="helloWorld1" object="myPanel" var="true"
addPage="hwFragment4a" />
</ext4:container>

You can defer execution of the script file by adding the attribute defer=”defer”.

You can also add in-line Javascript to your Container Page, though this should be kept to a minimum, eg:

<ext4:container rootPath="/vista/ext-4">
 <script src="/vista/js/ext4Demo.js" />
 <ext4:panel title="Outer Panel 2" id="helloWorld1" object="myPanel" var="true"
addPage="hwFragment4a" />
 <script type="text/javascript">
 alert("in line Javascript here!");
 </script>
</ext4:container>

Inline Javascript within Fragments has to be handled differently: you embed any Javascript code inside <ext4:js> tags. The
<ext4:js> tag has one mandatory attribute: at. Possible values are “top” and “bottom”, denoting whether the inline
Javascript is to be placed before or after any generated ExtJS Javascript. For example:

<ext4:fragment onBeforeRender="getHello^ext4Demo">
 <ext4:panel title="Outer Injected Panel" id="helloWorld2" width="400"
height="100">
 <ext4:panel title="Inner Injected Panel" id="myInnerPanel" html="#hello">
 <ext4:listeners>
 <ext4:listener render="function(panel,eopts) {alert(panel.id + ' ren-
dered!');}" />
 </ext4:listeners>
 </ext4:panel>
 </ext4:panel>

 <ext4:js at="top">
 alert("This goes before any ExtJS code");
 </ext4:js>

 <ext4:js at="bottom">
 alert("This goes after any ExtJS code");
 </ext4:js>

</ext4:fragment>

The generated Javascript that is sent to the browser when the example fragment above is loaded is as follows (after
indentation by the Online Javascript Beautifier):

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 20

alert("This goes before any ExtJS code");
Ext.create("Ext.panel.Panel", {
 height: 100,
 id: "helloWorld2",
 title: "Outer Injected Panel",
 width: 400,
 items: [{
 html: "Hello World! This is GT.M",
 id: "myInnerPanel",
 title: "Inner Injected Panel",
 xtype: "panel",
 listeners: {
 render: function (panel, opts) {
 alertMe(panel);
 }
 }
 }]
});
var addTo = 'helloWorld1';
var remove = '';
if (remove === 'true') Ext.getCmp('helloWorld1').removeAll(true);
if (addTo !== '') Ext.getCmp('helloWorld1').add(Ext.getCmp('helloWorld2'));
alert("This goes after any ExtJS code");

You can see how the two alerts have been added before and after the rest of the code that was generated from the
<ext4:panel> tag and its child tags.

Requesting and Fetching Fragments
The EWD ExtJS implementation provides you with a variety of ways by which you can request and fetch Fragments. You’ve
seen one already: the addPage attribute. You can also use:

- the EWD.ajax.getPage() function

- the nextPage attribute for buttons and tree menu members

The EWD.ajax.getPage() Function
You can use the EWD.ajax.getPage() function anywhere within listeners or inline Javascript. The arguments for this function
are as follows:

EWD.ajax.getPage({
 page: 'myFragment',
 targetId: 'myTarget',
 nvp: 'a=123&b=xyz'
});

Note:

- the targetId parameter is only required for fragments that deliver HTML markup. Leave it out if the fragment being
fetched consists entirely of <ext4:*> tags and/or Javascript

- the nvp parameter is optional. It allows you to add additional name/value pairs to the HTTP request. These can be
accessed and used within the Fragment’s onBeforeRender method by using the getRequestValue() function, eg:

o set a=$$getRequestValue^%zewdAPI(“a”,sessid)

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 21

Preventing Unauthorised Use
All fragments can, in theory, be fetched by a valid user by using the EWD.ajax.getPage() function. You should therefore
always protect critical fragments from unauthorised access by someone using a development tool such as Chrome
Developer Tools: such tools can allow arbitrary invocation of Javascript within the browser. EWD provides a mechanism
whereby you can take fine-grained and, if required, context-sensitive control of which fragments may and may not be
accessed at any point in the user’s session. It is strongly recommended that you make use of this mechanism to
prevent unauthorised access to fragments by Javascript hacking.

The key to securing and controlling access to fragments is to add the disableGetPage=”true” attribute to your
<ext4:container> tags, for example:

<ext4:container rootPath="/vista/ext-4" disableGetPage="true">
 <ext4:panel title="Outer Panel 2" id="helloWorld1" object="myPanel" var="true"
addPage="hwFragment4a" />
</ext4:container>

Note: this attribute can also be used in older Container Pages that use the <ewd:config> tag.

The effect of adding this attribute is to prevent any fragments from being fetched. Clearly this may be too draconian and you
may want the container page, itself, to be able to fetch one or more specific fragments (eg the example above needs to be
able to fetch hwFragment4a.ewd). This can be achieved by adding an onBeforeRender method to the Container Page (or a
pre-page script in an older-style Container Page) that makes use of the enableGetPage() EWD API method. For example:

<ext4:container rootPath="/vista/ext-4" disableGetPage="true"
 onBeforeRender="initAccess^Ext4Demo">
 <script src="/vista/js/ext4Demo.js" />
 <ext4:panel title="Outer Panel 2" id="helloWorld1" object="myPanel" var="true"
addPage="hwFragment4a" />
</ext4:container>

In the example above, the initAccess() function would release access to the hwFragment4a.ewd fragment as follows:

initAccess(sessid)
 d enableGetPage^%zewdAPI("hwFragment4a",sessid)
 QUIT ""

An alternative technique is also possible whereby you don’t use the disableGetPage attribute, leaving the Container Page to
adopt its default behaviour, allowing all fragments to be accessed. In the onBeforeRender method, you can then specify the
fragment(s) to which you want to specifically deny access. For this you use the disableGetPage() EWD API, eg:

denyAccess(sessid)
 d disableGetPage^%zewdAPI("privilegedInfo",sessid)
 QUIT ""

You can probably see that by using the enableGetPage() and disableGetPage() APIs within your fragments’ onBeforeRender
methods, you can apply very fine-grained and context-sensitive access to the fragments available within an application, with
each fragment selectively turning on and off access to other fragments (or even itself).

Note that the access control to fragments is determined at the back-end, out of sight from and inaccessible by the user.
This is critically important: even though the initial Container Page creates Javascript functions that can potentially fetch every

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 22

one of the available fragments in the application, they will simply return an error if the back-end has been instructed to deny
access. A hacker will only be able to fetch the fragments that the application would allow the user to fetch anyway at that
particular point in their session.

The NextPage Attribute
The <ext4:button> tag allows the use of an attribute named nextPage. This attribute creates a handler function with a
request to fetch the specified fragment, so it provides a very convenient and readable shorthand describing the functionality
of the button. For example:

<ext4:container rootPath="/vista/ext-4">
 <ext4:panel title="Outer Panel 5" id="helloWorld1" html="original outer panel">
 <ext4:toolbar dock="bottom">
 <ext4:button text="Click Me" nextpage="hwFragment5b" addTo="helloWorld1" />
 </ext4:toolbar>
 </ext4:panel>
</ext4:container>

Clicking the button will fetch a fragment named hwFragment5b.ewd. The addTo attribute specifies the id of the ExtJS
component to which the fragment’s contents should be added. In this case we want to add it to the outer panel: its id is
“helloWorld1”.

If hwFragment5b.ewd contains the following:

<ext4:fragment onBeforeRender="getHello^ext4Demo">
 <ext4:panel title="Outer Injected Panel 5b" id="panel5b1" width="400" height="100">
 <ext4:panel title="Inner Injected Panel" id="panel5b2" html="#hello" />
 </ext4:panel>
</ext4:fragment>

Then when the Container page is loaded, it will appear as follows:

When the Click Me button is clicked, the fragment is fetched and the Container Page changes to the following:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 23

Note: you can optionally add another attribute named nvp: this allows you to add an additional name/value pair (or list of
name/value pairs) to the generated request. This can help in your back-end code when you want to uniquely identify the
button that requested the fragment, eg:

<ext4:button text="Click Me" nextpage="hwFragment5b" addTo="helloWorld1"
 nvp="a=12&b=xyz" />

The value of nvp could, of course, be an EWD Session variable:

<ext4:button text="Click Me" nextpage="hwFragment5b" addTo="helloWorld1"
 nvp="#but1nvp" />

Of course, you are not limited to this behaviour for buttons. If you require other behaviour, you can define a handler using
the standard, documented handler Config Option, eg:

<ext4:button text="Try Me" handler="function() {alert('You clicked the button')}" />

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 24

ExtJS Layouts

Layouts
ExtJS provides a very sophisticated and visually rich set of components and widgets for laying out the information that you
display in a browser. The key components and their corresponding EWD Custom Tags include:

ExtJS Component EWD Custom Tag Purpose
Ext.container.Viewport ext4:viewport Creates a container that occupies the

available browser area, into which you
add panels, typically using regions

Standard Ext.panel.Panel ext4:panel Creates a panel container. Specify a
region (eg North, South, Center, etc) to
position it within a Viewport

Ext.panel.Panel defined to act as an
accordion panel

ext4:accordionPanel Creates an accordion panel

Ext.tab.Panel ext4:tabPanel Creates a tab panel that may contain a
set of panels. Clicking a tab brings its
associated panel into view

ExtJS Documentation Example
If you look at Sencha’s API documentation for the Ext.container.Viewport, you’ll see the following example:

The ExtJS Source Javascript code for this is as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 25

Ext.create('Ext.container.Viewport', {
 layout: 'border',
 items: [{
 region: 'north',
 html: '<h1 class="x-panel-header">Page Title</h1>',
 autoHeight: true,
 border: false,
 margins: '0 0 5 0'
 }, {
 region: 'west',
 collapsible: true,
 title: 'Navigation',
 width: 150
 // could use a TreePanel or AccordionLayout for navigational items
 }, {
 region: 'south',
 title: 'South Panel',
 collapsible: true,
 html: 'Information goes here',
 split: true,
 height: 100,
 minHeight: 100
 }, {
 region: 'east',
 title: 'East Panel',
 collapsible: true,
 split: true,
 width: 150
 }, {
 region: 'center',
 xtype: 'tabpanel', // TabPanel itself has no title
 activeTab: 0, // First tab active by default
 items: {
 title: 'Default Tab',
 html: 'The first tab\'s content. Others may be added dynamically'
 }
 }]
});

This same example can be defined as follows using EWD:

<ext4:container rootPath="/ext-4">
 <ext4:viewPort layout="border">
 <ext4:panel region="north" id="northPanel" autoheight="true" border="false" margins="0 0 5 0"
 html="<h1 class='x-panel-header'>Page Title</h1>" />
 <ext4:panel region="west" collapsible="true" title="Navigation" width="150" />
 <ext4:panel region="south" collapsible="true" title="South Panel" collapsible="true"
 html="Information goes here" split="true" height="100" minHeight="100" />
 <ext4:panel region="east" collapsible="true" title="East Panel" split="true" width="150" />
 <ext4:tabPanel region="center" activeTab="0">
 <ext4:panel title="Default Tab"
 html="The first tab's content. Others may be added dynamically" />
 </ext4:tabPanel>
 </ext4:viewPort>
</ext4:container>

Of course, where we’ve defined HTML content for panels using the html attribute above, we could load the content
dynamically using fragments, loaded using the addPage attribute. For example here’s the same example rewritten using
fragments:

<ext4:container rootPath="/ext-4" onBeforeRender="getLayoutTitle^ext4Demo">
 <ext4:viewPort layout="border">
 <ext4:panel region="north" id="northPanel" autoheight="true" border="false" margins="0 0 5 0"
 html="<h1 class='x-panel-header'><?= #pageTitle ?></h1>" />
 <ext4:panel region="west" collapsible="true" title="Navigation" width="150" />
 <ext4:panel region="south" collapsible="true" title="South Panel" collapsible="true"
 split="true" height="100" minHeight="100" addPage="test1cSouthPanel" />
 <ext4:panel region="east" collapsible="true" title="East Panel" split="true" width="150" />
 <ext4:tabPanel region="center" activeTab="0">
 <ext4:panel title="Default Tab" addPage="test1cTabPanel" />
 </ext4:tabPanel>
 </ext4:viewPort>
</ext4:container>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 26

The onBeforeRender function might be something like this:

getLayoutTitle(sessid)
 d setSessionValue^%zewdAPI("pageTitle","Dynamic Page Title",sessid)
 QUIT ""

The test1cSouthPanel.ewd fragment might be as follows:

<ext4:fragment onBeforeRender="getSouthPanelContent^ext4Demo">
 <ext4:panel border="0" html="#southPanelContent" />
</ext4:fragment>

And the test1cTabPanel.ewd fragment might be as follows:

<ext4:fragment onBeforeRender="getTabPanelContent^ext4Demo">
 <ext4:panel border="0" html="#tabPanelContent" />
</ext4:fragment>

The onBeforeRender functions for these two fragments might be as follows:

getSouthPanelContent(sessid)
 d setSessionValue^%zewdAPI("southPanelContent","Dynamic Content for South Panel",sessid)
 QUIT ""
 ;
getTabPanelContent(sessid)
 d setSessionValue^%zewdAPI("tabPanelContent","Dynamic Content for Tab Panel",sessid)
 QUIT ""

Of course, in a real application, the dynamically-generated content would probably include data looked up from the GT.M or
Caché database.

It will now look as follows when run in a browser:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 27

It’s very simple to replace the simple Navigation panel with a set of Accordion Panels:

<ext4:container rootPath="/ext-4" onBeforeRender="getLayoutTitle^ext4Demo">
 <ext4:viewPort layout="border">
 <ext4:panel region="north" id="northPanel" autoheight="true" border="false" margins="0 0 5 0"
 html="<h1 class='x-panel-header'><?= #pageTitle ?></h1>" />
 <ext4:accordionPanel region="west" margins="5 0 5 5" split="true" collapsible="true"
 width="210">
 <ext4:panel title="Accordion Item 1" html="Currently empty" />
 <ext4:panel title="Accordion Item 2" html="Currently empty" />
 <ext4:panel title="Accordion Item 3" html="Currently empty" />
 </ext4:accordionPanel>
 <ext4:panel region="south" collapsible="true" title="South Panel" collapsible="true"
 split="true" height="100" minHeight="100" addPage="test1cSouthPanel" />
 <ext4:panel region="east" collapsible="true" title="East Panel" split="true" width="150" />
 <ext4:tabPanel region="center" activeTab="0">
 <ext4:panel title="Default Tab" addPage="test1cTabPanel" />
 </ext4:tabPanel>
 </ext4:viewPort>
</ext4:container>

The layout now appears as follows. Try it out for yourself and see how you can expand and contract each of the accordion
panels.

Each of the panels within the <ext4:accordionPanel> container could, of course, be given dynamic content by replacing the
html attribute with an addPage attribute that fetches the content from a fragment.

Layout Sub-components
Of course once you have a layout defined, you’ll want to populate the various panels and containers with content, often
included in and/or presented using other ExtJS widgets and components, for example:

- grids

- tree menus

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 28

- toolbars and panels

All of these components can also be used separately or in combination with other components: ie they aren’t limited to use
within a Viewport container.

The following chapters will focus on the most important of these ExtJS components, and how to use them with the EWD
ExtJS v4 Custom Tags.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 29

Toolbars

Defining a Toolbar & Buttons
Toolbars are header or footer bars that can be added to a Panel component, into which you can add buttons. The buttons
can be configured to trigger actions such as requesting new EWD fragments. Let’s look at a simple EWD example
demonstrating their use:

<ext4:container rootPath="/ext-4">

 <ext4:panel width="600" height="200" title="Toolbar demo">

 <ext4:toolbar dock="top">
 <ext4:button text="Save" />
 <ext4:button text="Cancel" />
 </ext4:toolbar>

 <ext4:toolbar dock="bottom" height="50">
 <ext4:layout pack="center" />
 <ext4:button text="Add something" />
 <ext4:button text="Set Options" />
 <ext4:button text="Remove something" />
 </ext4:toolbar>

 </ext4:panel>

</ext4:container>

If you compile and run this page, it will appear as follows in your browser:

This example demonstrates how toolbars can be added to either the header or footer of a panel, and can either be left-
justified or centered. Currently none of the buttons do anything. We could add a simple handler to the Save button,
generating an alert if pressed:

<ext4:toolbar dock="top">
 <ext4:button text="Save" handler="function() {Ext.Msg.alert('Test','You clicked the Save button')}" />
 <ext4:button text="Cancel" />
</ext4:toolbar>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 30

However, typically we’ll want to fetch an EWD fragment, so we could do the following:

<ext4:container rootPath="/ext-4">

 <ext4:panel id="mainPanel" width="600" height="200" title="Toolbar demo">

 <ext4:toolbar dock="top">
 <ext4:button text="Save"
 handler="function() {Ext.Msg.alert('Test','You clicked the Save button')}" />
 <ext4:button text="Cancel" />
 </ext4:toolbar>

 <ext4:toolbar dock="bottom" height="50">
 <ext4:layout pack="center" />
 <ext4:button text="Add something" nextPage="test2cPanel" addTo="mainPanel"
 replacePreviousPage="true" />
 <ext4:button text="Set Options" />
 <ext4:button text="Remove something" />
 </ext4:toolbar>

 </ext4:panel>

</ext4:container>

If testcPanel.ewd contains the following:

<ext4:fragment>
 <ext4:panel title="New Panel" html="Added at <?= #ewd.time ?>" />
</ext4:fragment>

Then when you click the Add something button, you’ll see something like:

By specifying replacePreviousPage=”true”, the inner panel will be replaced each time you press the Add something button
and will show the current time on the Caché or GT.M server (#ewd.time is an EWD Session value that is created and
updated automatically by EWD on every incoming request).

If you need to do anything more sophisticated, such as requesting an EWD fragment and passing it some name/value pairs,
you can write your own custom handler, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 31

<ext4:container rootPath="/ext-4">

 <script type="text/javascript">
 var setIt = function() {
 var nvp = "action=set&x=123";
 EWD.ajax.getPage({page:'test2cAction',nvp:nvp});
 };
 </script>

 <ext4:panel id="mainPanel" width="600" height="200" title="Toolbar demo">

 <ext4:toolbar dock="top">
 <ext4:button text="Save" handler="function() {Ext.Msg.alert('Test','You clicked the Save but-
ton')}" />
 <ext4:button text="Cancel" />
 </ext4:toolbar>

 <ext4:toolbar dock="bottom" height="50">
 <ext4:layout pack="center" />
 <ext4:button text="Add something" nextPage="test2cPanel" addTo="mainPanel" replacePrevious-
Page="true" />
 <ext4:button text="Set Options" handler="function() {setIt();}"/>
 <ext4:button text="Remove something" />
 </ext4:toolbar>

 </ext4:panel>

</ext4:container>

test2cAction.ewd can be nothing more than a fragment with an onBeforeRender method, providing an asynchronously-
requested fire-and-forget back-end method, eg:

<ext4:fragment onBeforeRender="doAction^ext4Demo" />

A simple version of the onBeforeRender method might look like the following:

doAction(sessid)
 n action,x
 s action=$$getRequestValue^%zewdAPI("action",sessid)
 s x=$$getRequestValue^%zewdAPI("x",sessid)
 d trace^%zewdAPI("action="_action_"; x="_x)
 QUIT ""
 ;

This is picking up the additional name/value pairs from the incoming request and adding them to EWD’s trace global. Of
course you could do anything you like at this point within your Caché or GT.M database. The fragment has no content and
returns an empty response, so there is no visible effect of this running in your browser’s page.

Formatting the Toolbar
ExtJS provides a number of components for formatting your toolbars:

Component EWD Tag Purpose
Ext.Toolbar.TextItem ext4:textItem adds text into the toolbar
Ext.Toolbar.Fill ext4:fill starts right-justification
Ext.Toolbar.Separator ext4:separator adds a vertical bar as a separator

between toolbar items

Ext.Toolbar.Spacer ext4:spacer adds extra horizontal space between
toolbar items

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 32

For example:

 <ext4:toolbar>
 <ext4:textitem text="Some Text" />
 <ext4:separator />
 <ext4:button text="Button 1" />
 <ext4:spacer width="20" />
 <ext4:button text="Button 2" />
 <ext4:fill />
 <ext4:textitem text="More text" />
 </ext4:toolbar>

Button Menus
ExtJS buttons don’t have to be just simple buttons. They can bring up multi-level menus.

EWD makes it simple to define such menus and make them interact with your Caché or GT.M back-end environment.
Menus can be either defined statically, using explicit EWD Custom Tags within your pages or fragments, or dynamically-
generated from within Caché or GT.M.

Static Button Menus
A button menu is defined by using the <ext4:buttonMenu> tag which is inserted inside an <ext4:button> tag. The individual
menu items are defined using <ext4:menuItem> tags. For example:

<ext4:container rootPath="/ext-4" title="Extjs 4 Test">
 <link href="/ext-4/examples/menu/menus.css" />
 <ext4:panel id="mainPanel" title="ExtJS v4 Button Menus" height="300" width="400">
 <ext4:toolbar>
 <ext4:button text="Button + Menu" iconCls="bmenu">
 <ext4:buttonmenu id="mainMenu">
 <ext4:menuitem text="Option 1" />
 <ext4:menuitem text="Option 2" />
 <ext4:menuitem text="Option 3" />
 </ext4:buttonmenu>
 </ext4:button>
 </ext4:toolbar>
 </ext4:panel>
</ext4:container>

Note that in this example we’ve added a special icon to the button. This icon is obtained from the menus.css file that is
included in the ExtJS distribution. In order to use it, we’ve added the appropriate <link> tag to the Container page. Button
icons are optional.

When compiled and run, this page will appear as follows when you click the button:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 33

Multi-level Static Menus
You can create as many menu levels as you want. Simply nest <ext4:menuItem> tags inside each other. For example:

<ext4:container rootPath="/ext-4" title="Extjs 4 Test">
 <link href="/ext-4/examples/menu/menus.css" />
 <ext4:panel id="mainPanel" title="ExtJS v4 Button Menus" height="300" width="400">
 <ext4:toolbar>
 <ext4:button text="Button + Menu" iconCls="bmenu">
 <ext4:buttonmenu id="mainMenu">
 <ext4:menuItem text="Option 1" />
 <ext4:menuItem text="Option 2">
 <ext4:menuItem text="Option 2a" />
 <ext4:menuItem text="Option 2b">
 <ext4:menuItem text="Option 2ai" />
 <ext4:menuItem text="Option 2aii" />
 </ext4:menuItem>
 <ext4:menuItem text="Option 2c" />
 </ext4:menuItem>
 <ext4:menuItem text="Option 3" />
 </ext4:buttonmenu>
 </ext4:button>
 </ext4:toolbar>
 </ext4:panel>
</ext4:container>

In this example above, the menu item Option 2 opens up two further levels:

Adding Interactivity to Menu Items
This is very simple: you use the same techniques that we’ve previously described for buttons themselves:

- you can use the nextpage attribute in an <ext4:menuItem> tag to fetch a fragment

- you can add a custom ‘click’ listener to an <ext4:menuItem> tag. Use the listener’s first argument to identify the item
that has been clicked.

For example:

<ext4:menuItem text="Option 1" nextpage="test2cPanel" addTo="mainPanel" replacePreviousPage="true" />

<ext4:menuItem text="Option 3">
 <ext4:listeners>
 <ext4:listener click="function(item,e,eOpts) {Ext.Msg.alert('Test','You selected ' + item.text)}" />
 </ext4:listeners>
</ext4:menuItem>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 34

Dynamically-defined Button Menus
EWD adds a very powerful feature: the ability to define a single-level or multi-level button menu from within your Caché or
GT.M back-end environment. Your menus can therefore be made context-sensitive, based on information stored in the
database or in the user’s EWD Session. To create a dynamic button menu, simply add the sessionName attribute to the
<ext4:buttonMenu> tag. The value of the sessionName attribute will be the name of an EWD Session Array that you define
in the onBeforeRender method (normally) for the page or fragment containing the buttonMenu.

If you’re using the sessionName attribute, you don’t need to add the <ext4:buttonMenu> or <ext4:menuItem> tags. All the
necessary Javascript will be generated automatically at render-time.

For example:

<ext4:container rootPath="/ext-4" title="Extjs 4 Test" onBeforeRender="getButtonMenu^Ext4Demo">
 <link href="/ext-4/examples/menu/menus.css" />
 <ext4:panel id="mainPanel" title="ExtJS v4 Button Menus" height="300" width="400">
 <ext4:toolbar>
 <ext4:button text="Button + Menu" iconCls="bmenu">
 <ext4:buttonmenu id="mainMenu" sessionName="myButtonMenu" />
 </ext4:button>
 </ext4:toolbar>
 </ext4:panel>
</ext4:container>

To create a simple menu, the getButtonMenu() onBeforeRender method might look like the following:

getButtonMenu(sessid)
 n menu
 ;
 s menu(1,"text")="Option 1"
 s menu(2,"text")="Option 2"
 s menu(3,"text")="Option 3"
 d mergeArrayToSession^%zewdAPI(.menu,"myButtonMenu",sessid)
 QUIT ""
 ;

So, all that’s required is to create an EWD Session Array of the correct name containing the definition of the button menu
items. The first subscript of the array is the menu item’s position number (starting a 1). The second subscript defines the
property name. Naturally enough, the “text” property defines the menu item’s visible text. You can define as properties
anything that you would have been able to specify as an attribute in the <ext4:menuItem> tags (including any single value
Config Option for the Ext.menu.Item class. Note that the property names are case-sensitive and must match those of the
equivalent Config Option).

Adding Interactivity to Dynamic Button Menus
Clearly our example won’t do much other than display the 3 menu options. To add interactivity, simply add the nextPage,
addTo and (if required) the replacePreviousPage properties to each item, eg:

getButtonMenu(sessid)
 n menu
 ;
 s menu(1,"text")="Option 1"
 s menu(1,"nextPage")="test2cPanel"
 s menu(1,"addTo")="mainPanel"
 s menu(1,"replacePreviousPage")="true"
 s menu(2,"text")="Option 2"
 s menu(3,"text")="Option 3"
 d mergeArrayToSession^%zewdAPI(.menu,"myButtonMenu",sessid)
 QUIT ""
 ;

Clearly this can become laborious and unnecessarily repetitive if all or most of the menu options should fetch the same
fragment. So you can define the default behaviour within the <ext4:buttonMenu> tag, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 35

<ext4:container rootPath="/ext-4" title="Extjs 4 Test" onBeforeRender="getButtonMenu^Ext4Demo">
 <link href="/ext-4/examples/menu/menus.css" />
 <ext4:panel id="mainPanel" title="ExtJS v4 Button Menus" height="300" width="400">
 <ext4:toolbar>
 <ext4:button text="Button + Menu" iconCls="bmenu">
 <ext4:buttonmenu id="mainMenu" sessionName="myButtonMenu" nextPage="test3cPanel" addTo="mainPanel"
 replacePreviousPage="true" />
 </ext4:button>
 </ext4:toolbar>
 </ext4:panel>
</ext4:container>

 These default attributes will now be applied to any menu items in the EWD Session Array that don’t specify a nextPage
property: ie options 2 and 3 in the example above. Anything defined in the EWD Session Array takes precedence over the
defaults.

Dynamically Defining Multi-level Button Menus
To create a multi-level menu, use the special “child” property, eg:

getButtonMenu(sessid)
 n menu
 ;
 s menu(1,"text")="Option 1"
 s menu(1,"nextPage")="test2cPanel"
 s menu(1,"addTo")="mainPanel"
 s menu(1,"replacePreviousPage")="true"
 s menu(2,"text")="Option 2"
 s menu(2,"child",1,"text")="Option 2a"
 s menu(2,"child",1,"child",1,"text")="Option 2ai"
 s menu(2,"child",1,"child",2,"text")="Option 2aii"
 s menu(2,"child",2,"text")="Option 2b"
 s menu(3,"text")="Option 3"
 s menu(3,"text")="Option 3"
 d mergeArrayToSession^%zewdAPI(.menu,"myButtonMenu",sessid)
 QUIT ""
 ;

Both Option 2 and Option 2a now act as intermediate-level options that open up the lower-level options. By default, Option
2ai, Option 2aii and Option 2b will fetch the test3cPanel.ewd fragment as defined in the <ext4:buttonMenu> tag.

You can define menus to any level of nesting you wish.

Identifying the Clicked Menu Item
Clearly we need some way of identifying which menu option was clicked, and in a way that is independent of the nesting of a
multi-level menu. EWD allows you to define a set of additional name/value pairs that will be sent with the HTTP request for
the fragment when you click a menu option. Just specify an “nvp” property for each menu option, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 36

getButtonMenu(sessid)
 n menu
 ;
 s menu(1,"text")="Option 1"
 s menu(1,"nextPage")="test2cPanel"
 s menu(1,"addTo")="mainPanel"
 s menu(1,"replacePreviousPage")="true"
 s menu(1,"nvp")="item=1"
 s menu(2,"text")="Option 2"
 s menu(2,"child",1,"text")="Option 2a"
 s menu(2,"child",1,"child",1,"text")="Option 2ai"
 s menu(2,"child",1,"child",1,"nvp")="item=2ai&level=3"
 s menu(2,"child",1,"child",2,"text")="Option 2aii"
 s menu(2,"child",1,"child",2,"nvp")="item=2aii&level=3"
 s menu(2,"child",2,"text")="Option 2b"
 s menu(2,"child",2,"nvp")="item=2b&level=1"
 s menu(3,"text")="Option 3"
 s menu(3,"nvp")="item=3"
 d mergeArrayToSession^%zewdAPI(.menu,"myButtonMenu",sessid)
 QUIT ""

You can specify as many name/value pairs as you wish and their names and values are your responsibility. In order to use
them, you should use the $$getRequestValue EWD API in the onBeforeRender method of the fragment fetched by the menu
item. You can then define the logic appropriate to the value(s) you received, for example:

determineMenuItem(sessid)
 n item,level
 s item=$$getRequestValue^%zewdAPI("item",sessid)
 s level=$$getRequestValue^%zewdAPI("level",sessid)
 i item=2,level=3 d something
 ; etc...
 QUIT ""
 ;

Tools
In addition to toolbars, ExtJS allows you to add tools to a panel’s header. Tools are small pre-defined icons to which you can
add custom handlers, so you can make them behave very similarly to toolbar buttons and they can be a very nice
alternative. EWD exposes these tools via the <ext4:panelTool> tag.

The available tool icons are documented at:

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.panel.Tool-cfg-type

Here’s an example:

<ext4:container rootPath="/ext-4">

 <ext4:panel id="mainPanel" width="600" height="200" title="Toolbar demo">
 <ext4:paneltool type="help" nextPage="test2cPanel" addTo="mainPanel"
 replacePreviousPage="true" />
 <ext4:paneltool type="search" handler="function() {alert(111)}" />
 </ext4:panel>
</ext4:container>

When you compile and run this page, it will look like the following:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 37

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.panel.Tool-cfg-type
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.panel.Tool-cfg-type

Notice the two tool icons in the right corner of the panel’s title bar. Clicking them will invoke their respective handlers. As
you can see, you use the same techniques as you did with the toolbar buttons to add interactivity.

Note: you can use tools and toolbars together in the same panel if you wish.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 38

Menus

Menu Types
ExtJS provides a number of menu widgets. We’ve already seen Button Menus, but there are also:

- Independent floating menus (we’ll refer to these as just menus) (see the ExtJS class Ext.menu.Menu)

- tree menus (see the ExtJS class Ext.tree.Panel)

Menus
The menu panels that are attached to Button Menus can be actually be invoked and displayed independently of buttons. In
EWD you use the same <ext4:menuItem> tags as we saw in the previous chapter, but place them inside an <ext4:menu>
tag, eg:

<ext4:container rootPath="/ext-4">
 <ext4:panel html="Menu test">
 <ext4:menu width="100" height="100" floating="false">
 <ext4:menuitem text="Option 1" />
 <ext4:menuitem text="xOption 2">
 <ext4:listeners>
 <ext4:listener click="alert('option 2 clicked!');" />
 </ext4:listeners>
 </ext4:menuitem>
 <ext4:menuitem text="Option 3">
 <ext4:menuitem text="yOption 3a" />
 <ext4:menuitem text="zOption 3b" />
 </ext4:menuitem>
 </ext4:menu>
 </ext4:panel>
</ext4:container>

You can also define the menu dynamically using an EWD Session Array. Once again, the approach is the same as we saw n
the previous chapter for the <ext4:buttonMenu> tag, eg:

<ext4:container rootPath="/ext-4" onBeforeRender="getButtonMenu^ext4Demo">
 <ext4:panel id="panel2" html="Menu test 2">
 <ext4:menu sessionName="myButtonMenu" width="100" height="100" floating="false"
 nextPage="test2cPanel" addTo="panel2" />
 </ext4:panel>
</ext4:container>

Tree Menus
Tree menus are very simple to create using EWD and ExtJS. Unlike button menus, they are formally defined in ExtJS using a
JSON-based store, so EWD doesn’t provide a way of manually defining them using tags to represent the tree menu items.
Instead they must always be defined dynamically.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 39

Tree menus are defined using the <ext4:treePanel> tag.

In EWD you dynamically define an ExtJS tree menu in exactly the same way as a button menu. EWD will automatically build
the tree store from your EWD Session Array that defines the menu. The Session Array has the same syntax, structure and
properties as described earlier.

So we could use the onBeforeRender method that we used in the previous chapter and render it as a tree menu! Here’s an
example page that re-uses the button menu Session Array:

<ext4:container rootPath="/ext-4" onBeforeRender="getButtonMenu^Ext4Demo">

 <ext4:treepanel title="Simple Tree" id="myTreePanel" height="250" width="200"
 sessionName="myButtonMenu" addTo="mainPanel" replacePreviousPage="true"
 nextpage="test2cPanel" storeId="treeStore" />

 <ext4:panel id="mainPanel" html="Selections:" height="100" width="200" />

</ext4:container>

If you compile and run this page, you should see something like the following:

Clicking on the leaf options will fetch the specified fragment and add it to the bottom panel.

You also use the same techniques for identifying which tree menu option was clicked by the user: specify appropriate name/
value pairs using the “nvp” property for each leaf menu option, and detect them in the onBeforeRender method of the
fetched fragment.

Note that you can specify an id for the generated store. This is useful if you want to dynamically modify the tree store
contents using the ExtJS APIs at a later stage.

Combining a Tree Panel with a Layout
It’s very easy to hook together all the ExtJS components with EWD. For example, we could combine our example tree menu
into the layout that we created in an earlier chapter. Here’s an example:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 40

<ext4:container rootPath="/ext-4" onBeforeRender="getTreeMenu^Ext4Demo">
 <ext4:viewPort layout="border">
 <ext4:panel region="north" id="northPanel" autoheight="true" border="false" margins="0 0 5 0"
 html="<h1 class='x-panel-header'>Layout Demo</h1>" />
 <ext4:treePanel region="west" collapsible="true" title="Navigation" width="150" height="250"
 sessionName="myTreeMenu" border="0" addTo="centerPanel" replacePreviousPage="true"
 nextpage="test4cPanel" />
 <ext4:panel region="south" collapsible="true" title="South Panel" collapsible="true"
 split="true" height="100" minHeight="100" html="This is the South Panel" />
 <ext4:panel region="east" collapsible="true" title="East Panel" split="true" width="150" />
 <ext4:tabPanel region="center" activeTab="0">
 <ext4:panel title="Default Tab" id="centerPanel" />
 </ext4:tabPanel>
 </ext4:viewPort>
</ext4:container>

So what we’ve basically done is to substitute the simple, empty <ext4:panel> that we’d defined as the Navigation panel in
the west region with our <ext4:treePanel>. The onBeforeRender method for this example is a minor variation on our
buttonMenu example:

getTreeMenu(sessid)
 n menu
 ;
 s menu(1,"text")="Option 1"
 s menu(1,"nvp")="item=1"
 s menu(2,"text")="Option 2"
 s menu(2,"child",1,"text")="Option 2a"
 s menu(2,"child",1,"child",1,"text")="Option 2ai"
 s menu(2,"child",1,"child",1,"nvp")="item=2ai&level=3"
 s menu(2,"child",1,"child",2,"text")="Option 2aii"
 s menu(2,"child",1,"child",2,"nvp")="item=2aii&level=3"
 s menu(2,"child",2,"text")="Option 2b"
 s menu(2,"child",2,"nvp")="item=2b&level=2"
 s menu(3,"text")="Option 3"
 s menu(3,"nvp")="item=3"
 d mergeArrayToSession^%zewdAPI(.menu,"myTreeMenu",sessid)
 QUIT ""

We’ve set the default nextPage to be the fragment test4cPanel.ewd whose content will be added to the layout’s panel
whose id is centerPanel:

<ext4:treePanel region="west" collapsible="true" title="Navigation" width="150" height="250"
 sessionName="myTreeMenu" border="0" addTo="centerPanel" replacePreviousPage="true"
 nextpage="test4cPanel" />

Let’s create test4cPanel.ewd containing the following:

<ext4:fragment onBeforeRender="panel4^Ext4Demo">
 <ext4:panel title="Response" border="0" html="#response" />
</ext4:fragment>

 The onBeforeRender method might be as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 41

panel4(sessid)
 n html,item,level
 s item=$$getRequestValue^%zewdAPI("item",sessid)
 s level=$$getRequestValue^%zewdAPI("level",sessid)
 s html="<h3>You Selected:</h3><div>Item: "_item_"</div><div>Level: "_level_"</
div>"
 d setSessionValue^%zewdAPI("response",html,sessid)
 QUIT ""
 ;

This looks rather strange due to a quirk of the way EWD handles fragments. Any < characters must be HTML-escaped to
prevent them causing Javascript errors. So what this fragment is doing is echoing back the values of the item and level
name/value pairs that we’ve defined in the tree menu items.

If you compile these EWD pages and run the container page, you should see the following layout. In the example below I’ve
expanded the tree and clicked one of the tree menu items which has resulted in the test4cPanel fragment reporting back to
me in the center panel.

Now we could have separated out the tree menu into its own fragment. Whether or not you do so is your decision: you may
find it easier to manage and maintain you application if it is broken down into small fragments, but on the other hand, each
fragment requires the (albeit relatively small) overhead of an HTTP request

Anyway, here’s the same application with the tree menu separated out. First the revised Container Page:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 42

<ext4:container rootPath="/ext-4">
 <ext4:viewPort layout="border">
 <ext4:panel region="north" id="northPanel" autoheight="true" border="false" margins="0 0 5 0"
html="<h1
class='x-panel-header'>Layout Demo</h1>" />
 <ext4:panel region="west" collapsible="true" title="Navigation" width="150" height="250"
 addPage="layout3Tree" />
 <ext4:panel region="south" collapsible="true" title="South Panel" collapsible="true"
split="true"
height="100" minHeight="100" html="This is the South Panel" />
 <ext4:panel region="east" collapsible="true" title="East Panel" split="true" width="150" />
 <ext4:tabPanel region="center" activeTab="0">
 <ext4:panel title="Default Tab" id="centerPanel" />
 </ext4:tabPanel>
 </ext4:viewPort>
</ext4:container>

The West Region panel has been replaced with a simple <ext4:panel> container which fetches the layout3Tree.ewd
fragment. This fragment is as follows. Note that we’ve moved the onBeforeRender method from the Container Page to this
fragment:

 <ext4:fragment onBeforeRender="getButtonMenu^Ext4Demo">
 <ext4:treePanel width="150" height="250" sessionName="myButtonMenu" border="0"
 addTo="centerPanel" replacePreviousPage="true" nextpage="test4cPanel" />
</ext4:fragment>

You should find that this version will run identically to the original.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 43

Tab Panels

Defining a Tab Panel
We’ve already had a glimpse of a tab panel within the ViewPort example that we’ve used in earlier chapters. This chapter
will look in more detail at how you define and use them within EWD.

An ExtJS Tab Panel is an animated container for other panels. Each panel has a tab associated with it and clicking a panel’s
tab brings it into view. Only one of the panels inside a tab panel is visible at any one time.

In EWD you define a tab panel using the <ext4:tabPanel> tag. Inside this tag you can define as many <ext4:panel> tags as
you wish. Of course those panels can, in turn, contain other ExtJS components, and can automatically fetch fragments
containing other ExtJS components.

An Example
Here’s our Container Page:

<ext4:container rootPath="/ext-4">
 <ext4:viewPort layout="fit">
 <ext4:tabPanel height="200" plain="true" width="450">
 <ext4:panel title="Foo" bodyPadding="10" addPage="test5Panel" />
 <ext4:panel title="Bar" isActive="true" addPage="test5Panel2" >
 <ext4:tabConfig title="Custom Title" tooltip="My custom tooltip!" />
 </ext4:panel>
 </ext4:tabPanel>
 </etx4:viewPort>
</ext4:container>

The fragment test5Panel.ewd might contain:

<ext4:fragment>
 <ext4:panel border="0" html="Added at <?= #ewd.time ?>" />
</ext4:fragment>

The fragment test5Panel2.ewd might contain:

<ext4:fragment>
 <ext4:panel border="0" html="This is the default panel that should be initially visible" />
</ext4:fragment>

When these pages are compiled and the Container Page is run, it will appear as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 44

Note the following:

- normally the title attribute of each inner <ext4:panel> tag is used as the text for its tab. This is over-ridden if you add
an <ext4:tabConfig> tag

- each inner panel can either contain its own pre-defined content (using child tags that define other ExtJS components),
or fetch a fragment containing its content. The example above used the latter technique.

- EWD provides a handy shortcut technique for defining which of the tab panels should display by default (if you don’t
want to standard default which is for the first tab panel to display). Simply add the attribute isActive=”true” to the one
you want to appear by default. The example above is the equivalent of adding the activeTab=”1” attribute to the
<ext4:tabPanel> tag. The isActive attribute is a more intuitive description of what you want to achieve.

- You can add tool-tips: small panels that pop up when you move the mouse pointer over a tab. You can use these to
provide additional information to the user. The example above demonstrates how the <ext4:tabConfig> tag is used to
define a tool tip. Here’s what the tool-tip looks like when it pops up:

Adding Dynamic Behaviour
ExtJS allows you do many dynamic things with tabs and tab panels, including:

- adding panels to and removing panels from a tab panel

- programmatically selecting tabs

Here’s an example of how you can perform these actions via EWD:

<ext4:container rootPath="/ext-4">

 <ext4:tabPanel height="200" width="450" id="myTabPanel">
 <ext4:panel title="Foo" bodyPadding="10" html="Foo Panel" isActive="true" id="tab0" />
 <ext4:panel title="Bar" html="Bar Panel" id="tab1" />
 </ext4:tabPanel>

 <ext4:button text="Select 2nd" handler="function() {Ext.getCmp('myTabPanel').setActiveTab(1)}" />
 <ext4:button text="Add Tab" nextPage="newTab" addTo="myTabPanel" />
 <ext4:button text="Remove 1st" handler="function() {Ext.getCmp('myTabPanel').remove(0)}" />

</ext4:container>

Here’s the new tab fragment:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 45

<ext4:fragment onBeforeRender="getTabName^Ext4Demo">
 <ext4:panel title="#tabName" id="#tabName" html="New tab <?= #tabNo ?> added at <?= #ewd.time ?>" />
</ext4:fragment>

Note that is is critically important to keep the id values of all ExtJS components unique: if you don’t, the effects can be
unpredictable. Hence, this fragment generates a unique id for itself within its onBeforeRender method as follows:

getTabName(sessid)
 ;
 n tabNo
 ;
 s tabNo=$$getSessionValue^%zewdAPI("tabNo",sessid)
 d setSessionValue^%zewdAPI("tabNo",tabNo+1,sessid)
 d setSessionValue^%zewdAPI("tabName","NewTab"_(tabNo+1),sessid)
 QUIT ""
 ;

Try compiling and running this example to see it in action.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 46

Windows

ExtJS Windows
The ExtJS documentation describes their Window components as follows:

“A specialized panel intended for use as an application window. Windows are floated, resizable, and draggable by default.
Windows can be maximized to fill the viewport, restored to their prior size, and can be minimized.”

As such, they are an important part of the ExtJS UI feature set.

Once again, EWD makes them easy to use and integrate with Caché and GT.M.

Simple Example
Here’s a simple Container Page that creates a Window and populates it with a panel that is delivered from one of the
fragments we’ve previously developed.

<ext4:container rootPath="/ext-4">
 <ext4:window title="My Window" height="450" width="600" layout="fit" autoShow="true" addPage="test2cPanel" />
</ext4:container>

When compiled and run, this will appear as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 47

You’ll find that you can drag the window around, and clicking on the X in the top right will make it disappear.

If you add an id attribute to the <ext4:window> tag, you’ll then be able to invoke any of the methods available for windows,
as described in the ExtJS documentation.

•

Modal Windows
You can create a modal window very easily too. When a modal window appears, everything behind it becomes greyed out
and inaccessible. Only when the modal window is closed does the user gain access to the rest of the browser content.
Here’s an example:

<ext4:container rootPath="/ext-4">
 <ext4:viewPort object="theViewPort" layout="border" var="true">
 <ext4:modalwindow title="My Window" height="200" width="400" layout="fit" autoShow="true"
 addPage="test2cPanel" />
 </ext4:viewPort>
</ext4:container>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 48

Grids

ExtJS Grids
Grids are probably the most powerful feature within ExtJS, allowing amazing flexibility in terms of both display and editing of
data. As with all the other ExtJS widgets and components, EWD makes grids straightforward to work with and almost trivial
to integrate with Caché and GT.M.

You create an ExtJS grid by using the <ext4:gridpanel> tag. Grids use data stored in a JSON store, but, as with Tree Menu
stores, EWD allows you to define your grid data in a simple EWD Session Array: EWD converts this to the necessary JSON
structure and defines and creates the data store at page/fragment render-time.

You also have to define the columns that will be used for the grid. You have two ways of doing this:

- explicitly, using <ext4:gridcolumn> tags

- programmatically by defining an EWD Session Array

Simple Example
The following example creates a simple display-only grid, using text values. The columns are defined explicitly using tags,
and the data is a simple EWD Session Array. Here’s the Container Page:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons">
 <ext4:gridcolumn text="Name" width="100" sortable="false" hideable="false" dataIndex="name" />
 <ext4:gridcolumn text="Email Address" width="150" dataIndex="email" />
 <ext4:gridcolumn text="Phone Number" flex="1" dataIndex="phone" />
 </ext4:gridPanel>

</ext4:container>

The onBeforeRender method is as follows:

getGridData(sessid)
 ;
 n data
 ;
 s data(1,"name")="Lisa"
 s data(1,"email")="lisa@simpsons.com"
 s data(1,"phone")="555-111-1224"
 s data(2,"name")="Bart"
 s data(2,"email")="bart@simpsons.com"
 s data(2,"phone")="555-111-1234"
 s data(3,"name")="Homer"
 s data(3,"email")="homer@simpsons.com"
 s data(3,"phone")="555-111-1244"
 s data(4,"name")="Marge"
 s data(4,"email")="marge@simpsons.com"
 s data(4,"phone")="555-111-1245"
 d deleteFromSession^%zewdAPI("simpsons",sessid)
 d mergeArrayToSession^%zewdAPI(.data,"simpsons",sessid)
 ;
 QUIT ""

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 49

mailto:lisa@simpsons.com
mailto:lisa@simpsons.com
mailto:bart@simpsons.com
mailto:bart@simpsons.com
mailto:homer@simpsons.com
mailto:homer@simpsons.com
mailto:marge@simpsons.com
mailto:marge@simpsons.com

if you compile and run this Container Page, it should look like the following:

The structure of the EWD Session Array is as follows:

	 data(rowNumber, dataIndex) = cellValue

You’ll notice how the dataIndex attribute of the <ext4:gridColumn> tags maps to the corresponding dataIndex name within
the EWD Session Array.

You can control the behaviour and characteristics of each column by using the grid column attributes. These map directly to
the Config Options of the Ext.grid.column.Column class, so you should consult the ExtJS documentation and examples for
more information.

Dynamic Columns
Here’s the same example as above, but now the columns are also defined within the onBeforeRender method. You’ll see
that the column array properties map directly to the <ext4:gridColumn> tags and the Ext.grid.column.Column Config
Options:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridDef^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
columnDefinition="colDef" />

</ext4:container>

The onBeforeRender method is as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 50

getGridDef(sessid)
 ;
 n column,data
 ;
 s column(1,"dataIndex")="name"
 s column(1,"text")="Name"
 s column(1,"width")=100
 s column(1,"sortable")="false"
 s column(1,"hideable")="false"
 ;
 s column(2,"dataIndex")="email"
 s column(2,"text")="Email Address"
 s column(2,"width")=150
 ;
 s column(3,"dataIndex")="phone"
 s column(3,"text")="Phone Number"
 s column(3,"flex")=1
 ;
 d deleteFromSession^%zewdAPI("colDef",sessid)
 d mergeArrayToSession^%zewdAPI(.column,"colDef",sessid)
 ;
 s data(1,"name")="Lisa"
 s data(1,"email")="lisa@simpsons.com"
 s data(1,"phone")="555-111-1224"
 s data(2,"name")="Bart"
 s data(2,"email")="bart@simpsons.com"
 s data(2,"phone")="555-111-1234"
 s data(3,"name")="Homer"
 s data(3,"email")="homer@simpsons.com"
 s data(3,"phone")="555-111-1244"
 s data(4,"name")="Marge"
 s data(4,"email")="marge@simpsons.com"
 s data(4,"phone")="555-111-1245"
 d deleteFromSession^%zewdAPI("simpsons",sessid)
 d mergeArrayToSession^%zewdAPI(.data,"simpsons",sessid)
 ;
 QUIT ""
 ;

Use the columnDefinition attribute in the <ext4:gridPanel> tag to specify the EWD Session Array that is to be used to define
the Grid Columns. The Column Definition Session Array is structured as follows:

	 column(columnNumber, configOptionName) = Grid Column Config Option Value

Each dataIndex subscript in the data array should have a corresponding column array node with a matching dataIndex
value, eg the following means that the email values will be placed into the second column:

 s column(2,"dataIndex")="email"
 s data(1,"email")="lisa@simpsons.com"
 s data(2,"email")="bart@simpsons.com"
 s data(3,"email")="homer@simpsons.com"
 s data(4,"email")="marge@simpsons.com"

Note that both the column numbers and row numbers start from 1.

Identifying the Grid and Store
It’s always a good idea to provide your own id for your grids, and also to provide an id for the store. By doing so you can
dynamically manipulate and modify the grid using its built-in methods, and also dynamically modify the store contents if
required. We’ll extend our example grid as follows:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridDef^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
columnDefinition="colDef" id="myGrid" storeId="myStore" />

</ext4:container>

We can now set a pointer to our GridPanel instance and the data store using, respectively:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 51

mailto:lisa@simpsons.com
mailto:lisa@simpsons.com
mailto:bart@simpsons.com
mailto:bart@simpsons.com
mailto:homer@simpsons.com
mailto:homer@simpsons.com
mailto:marge@simpsons.com
mailto:marge@simpsons.com
mailto:lisa@simpsons.com
mailto:lisa@simpsons.com
mailto:bart@simpsons.com
mailto:bart@simpsons.com
mailto:homer@simpsons.com
mailto:homer@simpsons.com
mailto:marge@simpsons.com
mailto:marge@simpsons.com

 Ext.getCmp(‘myGrid’);

 Ext.getCmp(‘myStore’);

Special Column Types
EWD provides mappings for both explicitly-defined columns and dynamically-defined columns for the special ExtJS Grid
column types as follows:

Column Type ExtJS Class EWD Tag xtype Purpose
Boolean Ext.grid.column.Boolean ext4:booleanColumn booleancolumn Renders boolean data

fields

Date Ext.grid.column.Date ext4:dateColumn datecolumn Renders date fields
according to a format
string

Number Ext.grid.column.Number ext4:numberColumn numbercolumn Renders number data
fields

Action Ext.grid.column.Action ext4:actionColumn actioncolumn Renders one or more
icons in a grid cell

Row Numberer Ext.grid.RowNumberer ext4:rowNumberer rownumberer Creates a special
column that provides
automatic row
numbering

Explicity-defined Example
The previous simple grid has been extended to include an example of each of the special column types as follows:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData2^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="700" sessionName="simpsons">
 <ext4:rowNumberer />
 <ext4:gridcolumn text="Name" width="50" sortable="false" hideable="false" dataIndex="name" />
 <ext4:gridcolumn text="Email Address" width="150" dataIndex="email" />
 <ext4:gridcolumn text="Phone Number" width="120" dataIndex="phone" />
 <ext4:booleancolumn text="Interesting" dataIndex="interest" trueText="Yes" falseText="No" />
 <ext4:datecolumn text="DOB" dataIndex="dob" format="F d Y" width="120" />
 <ext4:numbercolumn text="Height" dataIndex="height" format="|0.00" width="50" />
 <ext4:actioncolumn width="50">
 <ext4:icon icon="/ext-4/examples/shared/icons/fam/cog_edit.png" tooltip="Edit" nextpage="test2cPanel"
 addTo="mainPanel" replacePreviousPage="true" nvp="iconNo=1" />
 <ext4:icon icon="/ext-4/examples/shared/icons/fam/delete.gif" tooltip="Delete"
 handler="function(grid, rowIndex, colIndex) {alert('delete: record=' +
 EWD.ext4.getGridRowNo(grid,rowIndex));}" />
 </ext4:actioncolumn>
 </ext4:gridPanel>

 <ext4:panel id="mainPanel" height="200" width="200" />

</ext4:container>

The onBeforeEdit method for the example above is as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 52

getGridData2(sessid)
 ;
 n data
 ;
 s data(1,"name")="Lisa"
 s data(1,"email")="lisa@simpsons.com"
 s data(1,"phone")="555-111-1224"
 s data(1,"interest")="true"
 s data(1,"dob")="06/20/1995"
 s data(1,"height")="1.2134"
 s data(2,"name")="Bart"
 s data(2,"email")="bart@simpsons.com"
 s data(2,"phone")="555-111-1234"
 s data(2,"interest")="true"
 s data(2,"dob")="02/04/1991"
 s data(2,"height")="1.5"
 s data(3,"name")="Homer"
 s data(3,"email")="homer@simpsons.com"
 s data(3,"phone")="555-111-1244"
 s data(3,"interest")="false"
 s data(3,"dob")="09/10/1956"
 s data(3,"height")="1.92"
 s data(4,"name")="Marge"
 s data(4,"email")="marge@simpsons.com"
 s data(4,"phone")="555-111-1245"
 s data(4,"interest")="false"
 s data(4,"dob")="11/20/1960"
 s data(4,"height")="1.75"
 d deleteFromSession^%zewdAPI("simpsons",sessid)
 d mergeArrayToSession^%zewdAPI(.data,"simpsons",sessid)
 ;
 QUIT ""
 ;

Note: if you look carefully at the <ext4:numberColumn> tag in the example above, you’ll see that the format attribute value is:

	 format="|0.00"

That leading | character serves an important purpose: it overrides EWD’s normal attribute quoting rules that would see the value as being
numeric and hence not requiring quotes. The format attribute defines a pattern that has to be treated as a string value.
EWD has two special overrides for attribute values:

• if the first character is | (ie vertical bar), the value will be treated as a quoted string
• if the first character is . (ie a period or full-stop), the value will be unquoted

If you compile and run the Container Page above, you should see:

Some key features of this example:

- The Boolean Column type allows you to transform boolean data (eg true/false) into an alternative format for display (eg
Yes/No)

- The available options for the formats for Date Columns are provided in the ExtJS documentation. See the Ext.Date
class

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 53

mailto:lisa@simpsons.com
mailto:lisa@simpsons.com
mailto:bart@simpsons.com
mailto:bart@simpsons.com
mailto:homer@simpsons.com
mailto:homer@simpsons.com
mailto:marge@simpsons.com
mailto:marge@simpsons.com

- Your Action Columns should contain one or more icons to which you’ll assign handler functions. Since you’ll probably
want to perform your processing at the back-end, it’s critically important that you can identify the row to which the
clicked icon belongs. To complicate matters, the user may have clicked on one or more column headings and re-
ordered the rows, so you need to identify the original row number so that you can correlate it back to your Grid Data
Session Array. EWD makes this simple: it automatically adds a hidden column to your Grids that contains the original
row number, and also provides you with a function to get the value of this field from within your Action Column icon
handlers:

o EWD.ext4.getGridRowNo(grid, rowIndex)

	 You can send this back as an additional name/value pair along with a request for a fragment, eg:

handler="function(grid, rowIndex) {var nvp = 'rowNo=' + EWD.ext4.getGridRowNo(grid, rowIndex);
EWD.ajax.getPage({page:'editRowData',nvp:nvp});}"

- However, in most situations you can make use of the nextPage attribute, as used by the first icon in our example:

<ext4:icon icon="/ext-4/examples/shared/icons/fam/cog_edit.png" tooltip="Edit2"
 nextpage="test2cPanel" addTo="mainPanel" replacePreviousPage="true" nvp="iconNo=1" />

- This provides you with an even simpler mechanism that can be used to fetch a fragment that can add itself to a panel,
as in the example above. Use the optional nvp attribute if you need to uniquely identify the request as coming from a
particular icon (eg if all the icons have the same nextpage value). If you want the fragment to run silently or if the
fragment has nothing but an onBeforeRender method, don’t specify the addTo or replacePreviousPage attributes.
The nextpage attribute therefore works identically to how we saw it work for buttons earlier. EWD recognises that
you’re using nextPage with an ActionColumn’s icon, and adds the row number to the name/value pairs that are sent
with the request to the back end. This name/value pair is named row, and you can pick it up within the fragment’s
onBeforeRender method using:

o s row=$$getRequestValue^%zewdAPI(“row”,sessid)

- Note that EWD ensures that the row number is the original row number, irrespective of whether or not the user has re-
ordered the Grid rows by clicking on column headers.

Dynamically-defined Example
Here’s our Grid example defined dynamically:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridDef2^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" id="myGrid" storeId="myStore" frame="true" height="200" width="700"
sessionName="simpsons" columnDefinition="colDef" />

</ext4:container>

You’ll see that very little has changed as far as the Container Page is concerned, except that we’ve now dispensed with the
<ext4:gridColumn> tags. All the changes are in the onBeforeRender method which now includes the definition of the special
column types. Here’s what it contains:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 54

getGridDef2(sessid)
 ;
 n column,data
 ;
 s column(1,"xtype")="rownumberer"
 ;
 s column(2,"dataIndex")="name"
 s column(2,"text")="Name"
 s column(2,"width")=50
 s column(2,"sortable")="false"
 s column(2,"hideable")="false"
 ;
 s column(3,"dataIndex")="email"
 s column(3,"text")="Email Address"
 s column(3,"width")=150
 ;
 s column(4,"dataIndex")="phone"
 s column(4,"text")="Phone Number"
 s column(4,"width")=120
 ;
 s column(5,"dataIndex")="interest"
 s column(5,"text")="Interesting"
 s column(5,"xtype")="booleancolumn"
 s column(5,"trueText")="Yes"
 s column(5,"falseText")="No"
 ;
 s column(6,"dataIndex")="dob"
 s column(6,"text")="DOB"
 s column(6,"xtype")="datecolumn"
 s column(6,"format")="F d Y"
 s column(6,"width")="120"
 ;
 s column(7,"dataIndex")="height"
 s column(7,"text")="Height"
 s column(7,"xtype")="numbercolumn"
 s column(7,"format")="|0.000"
 s column(7,"width")="50"
 ;
 s column(8,"xtype")="actioncolumn"
 s column(8,"width")="50"
 s column(8,"icon",1,"icon")="/ext-4/examples/shared/icons/fam/cog_edit.png"
 s column(8,"icon",1,"tooltip")="Edit"
 s column(8,"icon",1,"nextPage")="test2cPanel"
 s column(8,"icon",1,"addTo")="mainPanel"
 s column(8,"icon",1,"replacePreviousPage")="true"
 s column(8,"icon",2,"icon")="/ext-4/examples/shared/icons/fam/delete.gif"
 s column(8,"icon",2,"tooltip")="Delete"
 s column(8,"icon",2,"handler")="function(grid, rowIndex, colIndex) {alert('delete: record=' +
EWD.ext4.getGridRowNo(grid,rowIndex));}"
 ;
 d deleteFromSession^%zewdAPI("colDef",sessid)
 d mergeArrayToSession^%zewdAPI(.column,"colDef",sessid)
 ;
 s data(1,"name")="Lisa"
 s data(1,"email")="lisa@simpsons.com"
 s data(1,"phone")="555-111-1224"
 s data(1,"interest")="true"
 s data(1,"dob")="06/20/1995"
 s data(1,"height")="1.2134"
 s data(2,"name")="Bart"
 s data(2,"email")="bart@simpsons.com"
 s data(2,"phone")="555-111-1234"
 s data(2,"interest")="true"
 s data(2,"dob")="02/04/1991"
 s data(2,"height")="1.5"
 s data(3,"name")="Homer"
 s data(3,"email")="homer@simpsons.com"
 s data(3,"phone")="555-111-1244"
 s data(3,"interest")="false"
 s data(3,"dob")="09/10/1956"
 s data(3,"height")="1.92"
 s data(4,"name")="Marge"
 s data(4,"email")="marge@simpsons.com"
 s data(4,"phone")="555-111-1245"
 s data(4,"interest")="false"
 s data(4,"dob")="11/20/1960"
 s data(4,"height")="1.75"
 d deleteFromSession^%zewdAPI("simpsons",sessid)
 d mergeArrayToSession^%zewdAPI(.data,"simpsons",sessid)
 ;
 QUIT ""

So you can see that you specify the special column types by using their xtypes (as listed in the table at the start of this
section). Otherwise you should see that there is a one-to-one correspondence between the explicit tag attributes and the

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 55

mailto:lisa@simpsons.com
mailto:lisa@simpsons.com
mailto:bart@simpsons.com
mailto:bart@simpsons.com
mailto:homer@simpsons.com
mailto:homer@simpsons.com
mailto:marge@simpsons.com
mailto:marge@simpsons.com

EWD Session Array subscripts. Note, however, that whilst the tag attribute names are case-insensitive, the Session Array
attribute names are case-sensitive and must match the documented ExtJS class Config Options.

You can probably see that completely dynamically-defined Grids are very powerful: if wrapped as a fragment, you have the
basis of a re-usable grid component whose columns and content is completely variable, dependent on when and how it is
fetched.

On the other hand, explicitly-defined Grids are arguably easier to understand and maintain: their structure and content isn’t
defined in programmatic logic in the back-end.

Which you use is up to you, and will depend on a balance of factors that you must decide upon.

Editable Grids
ExtJS grids aren’t simply read-only widgets: you can allow cells to be edited, and you can add your own custom validation
logic. You’ll find examples in the ExtJS documentation of editable grids, and you can use the direct EWD/ExtJS tag
mappings to create the equivalent techniques in your EWD pages.

However, EWD provides a simple set of shortcut mechanisms that makes it much simpler to define editable grids and to
define validation that is to be conducted asynchronously within the GT.M or Caché back-end. Behind the scenes, EWD will
create the same Javascript code that you’ll see in those ExtJS examples.

The Editor Tag
The low-level way of making cells editable in a grid is to define an editor for a column. Once this is done, all cells in that
column will be editable. ExtJS provides a number of editor types, including:

- textfield

- numberfield

- datefield

- combobox

As you’ll see, EWD provides a shortcut technique for enabling each of these editor types. The shortcut techniques use a set
of typical default settings which will be satisfactory in most cases. However, if you need to use different settings, you should
revert to the low-level approach for editing. To do this, you use the <ext4:editor> tag inside the appropriate
<ext4:gridColumn> tag. The <ext4:editor> tag maps directly to the editor Config Option of the Ext.grid.column.Column
class. You also need to use a cellediting plugin for the Grid Panel. If this sounds complex and confusing, it is! However, if
you’re working from the ExtJS examples, you’ll find that you can use the standard technique of mapping from the ExtJS
components and their Config Options to correspondingly-named EWD tags and attributes. This low-level use is beyond the
scope of this document.

Fortunately, for most situations, the built-in EWD shortcut mechanisms for defining editable grids will be adequate for your
needs: let EWD do all that hard work for you, leaving you to specify your editing requirements in an intuitive and simple way.
These shortcut techniques are described below:

Editing using the TextField Editor
The simplest form of grid cell editing is to treat the cell as a text field and use the built-in ExtJS textfield editor. Here’s our
earlier simple Grid example using explicitly-defined columns, but modified to allow the Name cells to be editable:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 56

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 <ext4:gridcolumn text="Name" width="100" sortable="false" editAs="textfield" hideable="false"
dataIndex="name"/>
 <ext4:gridcolumn text="Email Address" width="150" dataIndex="email" />
 <ext4:gridcolumn text="Phone Number" flex="1" dataIndex="phone" />
 </ext4:gridPanel>

</ext4:container>

So you use the editAs attribute within any column that you want to be editable. The value of the editAs attribute defines the
type of ExtJS editor to use for the field. By default, the user needs to click twice on the field to trigger the editor. However
you can override this by adding the attribute clicksToEdit to the <ext4:gridPanel> tag, eg to trigger the editor simply by
tapping on a Name cell:

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest" clicksToEdit="1" >

In order to validate the edited value at the back-end, you specify a fragment name using the validationPage attribute: that
fragment’s responsibility will be to provide an onBeforeRender method that performs the necessary tests.

Here’s all there is to our validation fragment (in our example it will be named gridValidateTest.ewd):

<ext4:fragment onBeforeRender="gridValidate^Ext4Demo" />

Its onBeforeRender method is as follows:

gridValidate(sessid)
 ;
 n colName,rowNo,value
 ;
 s rowNo=$$getRequestValue^%zewdAPI("row",sessid)
 s colName=$$getRequestValue^%zewdAPI("colName",sessid)
 s value=$$getRequestValue^%zewdAPI("value",sessid)
 ; ... perform the necessary checks, eg
 i value=1234 QUIT $$gridValidationFail^%zewdExt4Code(sessid,"Thats an invalid value!","Rubbish")
 QUIT $$gridValidationPass^%zewdExt4Code()
 ;

The key features of a validation method are:

- the edited values are sent as request values, so you access them using the $$getRequestValue API

- the available request values are:

o row: the original row number (ie it doesn’t matter if the user has re-ordered the grid by clicking a column
heading)

o colName: the column name property

o value: the edited value of the cell

o originalValue: the value of the cell prior to the edit

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 57

The row and colName provide you with the pointers you need for the corresponding Grid Data Session Array, in this case a
Session Array named simpsons.

How you validate the edited field is entirely up to you, but as far as EWD is concerned there are only two possible outcomes:

- validation passed

- validation failed

If validation passed, you’ll typically want to just silently accept the edit. To do this, you Quit from the onBeforeRender
method, returning the value of a special function:

	 $$gridValidationPass^%zewdExt4Code()

If validation failed, you’ll typically want to alert the user, giving them some information on what they did wrong. To do this,
you Quit from the onBeforeRender method, returning the value of another special function:

	 $$gridValidationFail^%zewdExt4Code(sessid, reasonText, titleText)

The reasonText is the optional alert message text that instructs the user what the error was. If you don’t define reasonText,
the message will default to “Invalid value: xxxx” where xxx is the edited value.

The titleText allows you to optionally provide a title for the alert panel. If you don’t define titleText, it defaults to “Validation
Error”

You now have a simple editable grid. Try out the example, and try modifying the validation onBeforeRender method to
familiarise yourself with how it works and how you can customise your validation according to own requirements.

Using Dynamically-defined Columns
EWD provides an analogous method for Grids where you’ve defined your columns programmatically. Simply add the editas
property to the column definition array for the required column, eg we could re-define the previous example as follows:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridDef^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
columnDefinition="colDef" clicksToEdit="1" validationPage="gridValidateTest" />

</ext4:container>

The column definition part of this page’s onBeforeRender method would look like this:

 s column(1,"dataIndex")="name"
 s column(1,"text")="Name"
 s column(1,"width")=100
 s column(1,"sortable")="false"
 s column(1,"hideable")="false"
 s column(1,"editas")="textfield"
 ;
 s column(2,"dataIndex")="email"
 s column(2,"text")="Email Address"
 s column(2,"width")=150
 ;
 s column(3,"dataIndex")="phone"
 s column(3,"text")="Phone Number"
 s column(3,"flex")=1
 ;
 d deleteFromSession^%zewdAPI("colDef",sessid)
 d mergeArrayToSession^%zewdAPI(.column,"colDef",sessid)

That’s all that’s required: this will now behave identically to the explicitly-defined example.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 58

Numberfield Editor
ExtJS also includes a special number editor capability for grid cells that contain numbers, using a spinner control. Typically
you’ll use this in conjunction with columns that are defined as numberColumns.

To use the numberfield editor with explicitly-defined columns, you’d simply add the following column definition to your grid:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 etc

 <ext4:numbercolumn text="Height" width="50" editAs="numberfield" format="|0.00" dataIndex="height" />

 </ext4:gridPanel>

</ext4:container>

If you’re using dynamically-defined columns, here’s how you’d specify the same thing:

 s column(7,"dataIndex")="height"
 s column(7,"text")="Height"
 s column(7,"xtype")="numbercolumn"
 s column(7,"format")="|0.000"
 s column(7,"width")="50"
 s column(7,"editas")="numberfield"

You may find that you need to take more fine-grained control of the numberfield editor. If so, you can drop down a level and
use the <ext4:editor> tag. For example:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 etc

 <ext4:numbercolumn text="Height" dataIndex="height" format="|0.00" width="50">
 <ext4:editor xtype="numberfield" allowBlank="false" minValue="1" maxValue="3" step="0.1" />
 </ext4:numbercolumn>

 </ext4:gridPanel>

To do the same thing using dynamic columns:

 s column(7,"dataIndex")="height"
 s column(7,"text")="Height"
 s column(7,"xtype")="numbercolumn"
 s column(7,"format")="|0.000"
 s column(7,"width")="50"
 s column(7,"editas")="numberfield"
 s column(7,"editor","allowBlank")="false"
 s column(7,"editor","minValue")="1"
 s column(7,"editor","maxValue")="3"
 s column(7,"editor","step")=0.01

Back-end validation works identically to the textfield editor, as described earlier.

Datefield Editor
ExtJS also includes a very cool date editor capability for grid cells that contain dates, complete with a calendar pop-up.
Typically you’ll use this in conjunction with columns that are defined as dateColumns.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 59

To use the datefield editor with explicitly-defined columns, you’d simply add the following column definition to your grid:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 etc

 <ext4:datecolumn text="DOB" dataIndex="dob" format="m d Y" width="120" editas="datefield" />

 </ext4:gridPanel>

</ext4:container>

If you’re using dynamically-defined columns, here’s how you’d specify the same thing:

 s column(5,"dataIndex")="dob"
 s column(5,"text")="DOB"
 s column(5,"width")=120
 s column(5,"format")= "m d Y"
 s column(5,"editas")="datefield"
 s column(5,"xtype")="datecolumn"

Here’s an example of the datefield editor in action within a grid:

If you need more fine-grained control over the editor, or need to use Config Option values for the editor other than the
defaults used by EWD, you can drop down a level and use the <ext4:editor> tag, in a way similar to the example for the
numberfield described above.

Back-end validation works identically to the textfield editor, as described earlier. Note that the value and originalValue format
for dates sent by EWD to the back-end is mm/dd/yyyy , eg:

	 value: 04/30/2012

Combobox Editor
ExtJS also includes a combo box editor capability for grid cells that contain one of a pre-determined list of possible values.

To use the combobox editor with explicitly-defined columns, you’d simply add the following column definition to your grid:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 60

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 etc

 <ext4:gridcolumn text="Sex" width="100" dataIndex="sex" editas="combobox">
 <ext4:options>
 <ext4:option value="m" displayValue="Male" />
 <ext4:option value="f" displayValue="Female" />
 </ext4:options>
 </ext4:gridcolumn>

 </ext4:gridPanel>

</ext4:container>

You can alternatively make use of a standard EWD List by using the useList attribute:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 etc

 <ext4:gridcolumn text="Sex" width="100" dataIndex="sex" editas="combobox" useList="sex" />

 </ext4:gridPanel>

</ext4:container>

In this case, the list would be defined within the page/fragment’s onBeforeRender method in the standard way, eg:

 d clearList^%zewdAPI("sex",sessid)
 d appendToList^%zewdAPI("sex","Male","m",sessid)
 d appendToList^%zewdAPI("sex","Female","f",sessid)

If you’re using dynamically-defined columns, here’s how you’d specify the same thing:

 s column(4,"dataIndex")="sex"
 s column(4,"text")="Sex"
 s column(4,"width")=100
 s column(4,"editas")="combobox"
 s column(4,"options",1,"value")="m"
 s column(4,"options",1,"displayValue")="Male"
 s column(4,"options",2,"value")="f"
 s column(4,"options",2,"displayValue")="Female"

Or, to use an EWD list:

 s column(4,"dataIndex")="sex"
 s column(4,"text")="Sex"
 s column(4,"width")=100
 s column(4,"editas")="combobox"
 s column(4,"useList")="sex"

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 61

Here’s an example of what the Combobox editor looks like with an ExtJS Grid:

Back-end validation works identically to the textfield editor, as described earlier. EWD sends through to the back-end the
value property of the drop-down list, rather than the displayValue.

Grouping
ExtJS allows you to group all the values of a particular column. EWD makes this simple to control. For explicitly-defined
columns, just add the attribute groupField=”true” to the column tag that you want to group by, eg:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridData^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" frame="true" height="200" width="550" sessionName="simpsons"
 validationPage="gridValidateTest">
 etc

 <ext4:gridcolumn text="Email Address" width="150" dataIndex="email" groupField="true" />

 </ext4:gridPanel>

</ext4:container>

If you’re using dynamically-defined columns, you first add the groupField property to the appropriate column definition, eg:

 s column(2,"dataIndex")="email"
 s column(2,"text")="Email Address"
 s column(2,"width")=150
 s column(2,"groupField")="true"

Second, you must also specify in the <ext4:gridPanel> tag that you want grouping enabled, eg:

<ext4:container rootPath="/ext-4" onBeforeRender="getGridDef3^Ext4Demo" >

 <ext4:gridPanel title="Simpsons" id="simpsonsGrid" frame="true" height="200" width="700" sessionName="simpsons"
clicksToEdit="1" validationPage="gridValidateTest" columnDefinition="colDef" grouping="true" />

</ext4:container>

Note: this grouping attribute is unnecessary when you’re using explicitly defined column tags, because EWD’s compiler is
able to add it automatically to the <ext4:gridPanel> tag for you.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 62

Forms

ExtJS Forms
ExtJS provides a set of very nicely styled variants of the standard HTML form fields, in addition to some additional enhanced
form widgets. EWD makes them easy to use and automatically integrates them with your back-end database.

The following is a simple example, with just one single text field:

<ext4:container rootPath="/ext-4" onBeforeRender="getFormData^Ext4Demo">

 <ext4:formPanel id="myFormPanel" title="Contact Info" width="800" height="300" bodyPadding="10">
 <ext4:textfield id="car" fieldLabel="Car" value="*" />

 <ext4:submitbutton text="Submit" nextPage="validateForm" addTo="secondPanel" replacePreviousPage="true" />

 </ext4:formPanel>

 <ext4:panel id="secondPanel" width="200" height="200" />

</ext4:container>

The first thing to notice is the <ext4:formPanel> tag which provides the special panel into which ExtJS formats the form
fields.

Text Fields
In example above, we’re using the simplest of the form fields, the textfield, by using the <ext4:textfield> tag. The
<ext4:textfield> tag maps directly to the Ext.form.field.Date class and all of its Config Options can be used as attributes or
child tags in the usual way.

If you’re familiar with EWD’s HTML form field handling, you’ll see that it uses the value=”*” convention for displaying the value
of the EWD Session variable whose name matches the field’s id value when the form is rendered. The default values for form
fields are normally created in the page’s onBeforeRender method, in this case getFormData^Ext4Demo which is as follows:

getFormData(sessid)
 d setSessionValue^%zewdAPI("car","Volvo",sessid)
 QUIT ""
 ;

This is all that is needed to set the initial default value for the Car text field.

Thirdly, the <ext4:submitButton> tag adds a Submit button. Note that it uses the by now familiar nextPage/addTo
convention. In this example, pressing the submit button will fetch a fragment named validateForm. The onBeforeRender
method of this fragment will be used to validate the values that were submitted.

The validateForm.ewd fragment is as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 63

<ext4:fragment onBeforeRender="checkForm^Ext4Demo">
 <ext4:panel html="#html" />
</ext4:fragment>

In this example, the validation fragment returns a panel, but it could be nothing more than a fragment with an
onBeforeRender method if that was appropriate.

Its onBeforeRender method, checkForm^Ext4Demo, is as follows:

checkForm(sessid)
 d setSessionValue^%zewdAPI("html","Errors in form",sessid)
 n car
 s car=$$getSessionValue^%zewdAPI("car",sessid)
 ; the following is optional:
 d setFieldErrorAlert^%zewdExt4Code("Form Error!","You've made errors!",sessid)
 ; clear down any existing flagged errors:
 d clearFieldErrors^%zewdExt4Code(sessid)
 i car="" d setFieldError^%zewdExt4Code("car","You must enter a car name",sessid)
 i car="xxx" d setFieldError^%zewdExt4Code("car","I dont know that brand!",sessid)
 i '$$isFormErrors^%zewdExt4Code(sessid) d setSessionValue^%zewdAPI("html","Form validated OK",sessid)
 ; You must quit using this special function!
 QUIT $$formErrors^%zewdExt4Code(sessid)

There are a number of key features being used in the example above:

- by the time the onBeforeRender method has been invoked, the submitted value for the car textfield has been
automatically put into the EWD Sessionby EWD. We can therefore get hold of the submitted value using the function
$$getSessionValue^%zewdAPI(“car”,sessid).

- Any validation errors will cause an ExtJS alert window to pop up. You can customise its contents using the
setFieldAlert^%zewdExt4Code() method

- You denote any validation errors by invoking the setFieldError^%zewdExt4Code() method. This has the effect of
highlighting the form field in question and adding a tooltip that shows the user the reason for the error when they hover
over the field. You can flag as many errors as you wish within the form.

- If necessary, you can determine whether any errors have been found by using the $$isFormErrors^%zewdExt4Code()
function.

- In order to correctly communicate back to the ExtJS form, you should QUIT with a returnValue that is provided by the
$$formErrors^%zewdExt4Code() function. The actual returnValue that this produces depends on whether or not any
validation errors were found by your validation checking logic.

This example, when run, will look as follows when it first appears:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 64

If you change the value of the car field to xxx and click the Submit button, you should get an alert:

If you click on the alert’s OK button and hover the mouse pointer over the car field, you’ll see the tooltip message we defined
for this error:

However, if we change the car value to Ford and click Submit again, the fragment’s panel will be sent and added to the
lower panel:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 65

You’ll notice that we’ve included a validation check in the fragment’s onBeforeRender method to flag an error if the value of
car is an empty string. Although this is a reasonable thing to do, you might want to make use of a feature that is built-in to
ExtJS: you can add the attribute allowBlank=”false” to the textfield tag, ie:

 <ext4:textfield id="car" fieldLabel="Car" value="*" allowBlank="false" />

You’ll find that if you do this, you’ll still be able to submit the form, so you’ll still need to do the back-end validation to check
for empty values. However the visible difference is that the tooltip will now be the ExtJS default one:

	 This field is required

As you can see, EWD provides a very simple and intuitive mechanism for integrating ExtJS forms, yet providing a
sophisticated way of controlling their behaviour.

Let’s now examine the other form field types. We’ll add an instance of each one to our example form.

Date Fields
Date fields allow dates to be visually formatted in a wide variety of ways, and are edited using a calendar widget that
automatically pops up, eg:

Here’s an example of how to specify a date field:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 66

 <ext4:datefield id="myDate" fieldLabel="Date" value="*" submitFormat="m/d/Y" />

The <ext4:datefield> tag maps to the Ext.form.field.Date class and any of its Config Options can be used as attributes or
child tags as appropriate.

If you want the dates presented to the user in a different format, use the format attribute, eg for UK format:

 <ext4:datefield id="myDate" fieldLabel="Date" value="*" format="d/m/Y" submitFormat="m/d/Y" />

To pre-populate a date, use the same technique as for a textfield, but specify the date in US m/d/Y format (irrespective of the
display format you want to use), eg:

 d setSessionValue^%zewdAPI("myDate","04/20/2012",sessid)

This document provides details of the date format strings supported by ExtJS:

	 http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Date

When the form is submitted, a date field will be submitted according to the submitFormat you’ve chosen. To use and/or
validate the submitted value, get its value using the $$getSessionValue^%zewdAPI() method:

 s date=$$getSessionValue^%zewdAPI("myDate",sessid)

Time Fields
Time fields allow times to be visually formatted in a wide variety of ways, and are edited using a time selector drop-down
panel, eg:

Here’s an example of how to specify a time field:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 67

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Date
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Date

 <ext4:timefield id="myTime" fieldLabel="Time" value="*" format="24Hour" minValue="08:00" maxValue="18:00"
 increment="15" />

The <ext4:timefield> tag maps to the Ext.form.field.Time class and any of its Config Options can be used as attributes or
child tags as appropriate.

To pre-populate a time, use the same technique as for a textfield, but specify the time according to the format you’ve
specified in the tag, eg for the above example:

 d setSessionValue^%zewdAPI("myTime","13:34",sessid)

This document provides details of the date and time format strings supported by ExtJS:

	 http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Date

When the form is submitted, a time field will be submitted according to the format you’ve chosen. To use and/or validate it,
get its value using the $$getSessionValue^%zewdAPI() method:

 s time=$$getSessionValue^%zewdAPI("myTime",sessid) ; eg 09:30

Number Fields
Number fields allow numeric values to be visually formatted in a wide variety of ways, and are edited using a spinner widget,
eg:

Here’s an example of how to specify a number field:

 <ext4:numberfield id="myNumber" fieldLabel="Number" value="*" minValue="10" maxValue="100" step="10" />

The <ext4:numberfield> tag maps to the Ext.form.field.Number class and any of its Config Options can be used as attributes
or child tags as appropriate.

To pre-populate a number field, use the same technique as for a textfield, eg:

 d setSessionValue^%zewdAPI("myNumber",30,sessid)

To use and/or validate a submitted number field, get its value using the $$getSessionValue^%zewdAPI() method:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 68

http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Date
http://docs.sencha.com/ext-js/4-0/#!/api/Ext.Date

 s number=$$getSessionValue^%zewdAPI("myNumber",sessid)

Display Fields
Display fields allow values to be displayed and presented within a form, but they cannot be edited, eg:

Here’s an example of how to specify a display field:

 <ext4:displayfield id="myDisplay" fieldLabel="Display" value="*" />

The <ext4:displayfield> tag maps to the Ext.form.field.Display class and any of its Config Options can be used as attributes
or child tags as appropriate.

To pre-populate a display field, use the same technique as for a textfield, eg:

 d setSessionValue^%zewdAPI("myDisplay","Display Only text",sessid)

Hidden Fields
Hidden fields allow values to be added to a form, but they are not visible to and cannot be edited by the user, eg:

Here’s an example of how to specify a hidden field:

 <ext4:hiddenfield id="myHidden" value="*" />

The <ext4:hiddenfield> tag maps to the Ext.form.field.Hidden class and any of its Config Options can be used as attributes
or child tags as appropriate.

To pre-populate a hidden field, use the same technique as for a textfield, eg:

 d setSessionValue^%zewdAPI("myHidden","This is a hidden value",sessid)

To use and/or validate a submitted hidden field, get its value using the $$getSessionValue^%zewdAPI() method:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 69

 s number=$$getSessionValue^%zewdAPI("myHidden",sessid)

Slider Fields
Slider fields allow numeric values to be visually formatted and edited using a slider widget, eg:

Here’s an example of how to specify a number field:

 <ext4:sliderfield id="mySlider" fieldLabel="Slider" width="250" value="*" increment="10" minValue="0"
 maxValue="100" />

The <ext4:sliderfield> tag maps to the Ext.slider.Single class and any of its Config Options can be used as attributes or child
tags as appropriate.

To pre-populate a slider field, use the same technique as for a textfield, eg:

 d setSessionValue^%zewdAPI("mySlider",60,sessid)

To use and/or validate a submitted slider field value, get its value using the $$getSessionValue^%zewdAPI() method:

 s value=$$getSessionValue^%zewdAPI("mySlider",sessid)

Radio Fields
Radio fields are the ExtJS version of radio buttons. They are normally grouped together to form a Radio Group, each radio
field representing a possible, mutually exclusive value for the group, eg:

Here’s an example of how to specify a group of radio fields:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 70

 <ext4:radiogroup fieldLabel="Two columns" columns="2" vertical="true">
 <ext4:radiofield boxLabel="Item 1" name="rb" inputValue="i1" />
 <ext4:radiofield boxLabel="Item 2" name="rb" inputValue="i2" />
 <ext4:radiofield boxLabel="Item 3" name="rb" inputValue="i3" />
 <ext4:radiofield boxLabel="Item 4" name="rb" inputValue="i4" />
 <ext4:radiofield boxLabel="Item 5" name="rb" inputValue="i5" />
 <ext4:radiofield boxLabel="Item 6" name="rb" inputValue="i6" />
 </ext4:radiogroup>

The <ext4:radiofield> tag maps to the Ext.form.Radio class and any of its Config Options can be used as attributes or child
tags as appropriate. Similarly, the <ext4:radioGroup> tag maps to the Ext.form.RadioGroup class.

To pre-check a radio field group, set the value of the correspondingly-named EWD Session value to match the inputValue of
the radio button you want pre-checked. For example, the following will pre-check the Item 4 radio button in the example
above:

 d setSessionValue^%zewdAPI("rb","i4",sessid)

To use and/or validate the submitted response from a radio group, get the value of the radio button that was checked using
the $$getSessionValue^%zewdAPI() method:

 s valueChecked=$$getSessionValue^%zewdAPI("rb",sessid)

Dynamically-defined Radio Fields
You can also define a group of radio buttons dynamically. This is done by creating an EWD Session Array that contains the
radio button definitions. Typically you would define this array in the onBeforeRender method of the page or fragment that
contains the form. You then reference this Session Array in the <ext4:radioGroup> tag. The radio button name is also
defined in the <ext4:radioGroup> tag. For example:

 <ext4:radiogroup sessionName="myRadioFields" name="rb" fieldLabel="Two columns" columns="2" vertical="true" />

The EWD Session Array (in this example named “myRadioFields”) would be created as follows:

 s radio(1,"boxLabel")="Item 1"
 s radio(1,"inputValue")=1
 s radio(2,"boxLabel")="Item 2"
 s radio(2,"inputValue")=2
 s radio(3,"boxLabel")="Item 3"
 s radio(3,"inputValue")=3
 s radio(4,"boxLabel")="Item 4"
 s radio(4,"inputValue")=4
 s radio(5,"boxLabel")="Item 5"
 s radio(5,"inputValue")=5
 s radio(6,"boxLabel")="Item 6"
 s radio(6,"inputValue")=6
 d mergeArrayToSession^%zewdAPI(.radio,"myRadioFields",sessid)

Checkbox Fields
Checkbox fields are the ExtJS version of checkboxes. They are normally grouped together to form a Checkbox Group, each
checkbox field representing one possible value for the group, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 71

Here’s an example of how to specify a group of checkbox fields:

 <ext4:checkboxgroup fieldLabel="Two columns" columns="2" vertical="true">
 <ext4:checkboxfield boxLabel="Item 1" name="cb" inputValue="a1" />
 <ext4:checkboxfield boxLabel="Item 2" name="cb" inputValue="2b" />
 <ext4:checkboxfield boxLabel="Item 3" name="cb" inputValue="c3" />
 <ext4:checkboxfield boxLabel="Item 4" name="cb" inputValue="4" />
 <ext4:checkboxfield boxLabel="Item 5" name="cb" inputValue="5" />
 <ext4:checkboxfield boxLabel="Item 6" name="cb" inputValue="6" />
 </ext4:checkboxgroup>

The <ext4:checkboxfield> tag maps to the Ext.form.Checkbox class and any of its Config Options can be used as attributes
or child tags as appropriate. Similarly, the <ext4:checkboxGroup> tag maps to the Ext.form.CheckboxGroup class.

To pre-check a checkbox field group, use the standard EWD techniques for checkbox form fields: you must use one of two
EWD APIs to create the EWD Selected Array:

- invoke the setCheckboxOn() method for each checkbox that should be checked

- create a local array of checkboxes to be checked, then invoke the setCheckboxValues() method.

 For example, the following two alternatives will pre-check the first, third and sixth checkboxes in the example above:

 d initialiseCheckbox^%zewdAPI("cb",sessid)
 d setCheckboxOn^%zewdAPI("cb","a1",sessid)
 d setCheckboxOn^%zewdAPI("cb","c3",sessid)
 d setCheckboxOn^%zewdAPI("cb",6,sessid)

 n sel
 d initialiseCheckbox^%zewdAPI("cb",sessid)
 s sel("a1")="a1"
 s sel("c3")="c3"
 s sel(6)=6
 d setCheckboxValues^%zewdAPI("cb",.sel,sessid)

The initialiseCheckbox() method clears any previously checked values in the EWD Session Array.

To use and/or validate the submitted responses from a checkbox group, you extract the values from the EWD Selected
Array, again using the standard EWD APIs for checkboxes. Again, there are two alternative techniques.

To determine whether a specific checkbox was checked when the form was submitted:

 i $$isCheckboxOn^%zewdAPI("cb","c3",sessid) s result="Third checkbox was selected"

To create a local array of checked fields in the submitted checkbox group:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 72

 d getCheckboxValues^%zewdAPI("cb",.selected,sessid)
 ; format of array: selected("c3") = "c3"

Dynamically-defined Checkboxes
You can also define a group of checkboxes dynamically. This is done by creating an EWD Session Array that contains the
checkbox definitions. Typically you would define this array in the onBeforeRender method of the page or fragment that
contains the form. You then reference this Session Array in the <ext4:checkboxGroup> tag. The checkbox name is also
defined in the <ext4:checkboxGroup> tag. For example:

<ext4:checkboxgroup sessionName="myCBFields" name="cb" fieldLabel="Two columns" columns="2" vertical="true" />

The EWD Session Array (in this example named “myCBFields”) would be created as follows:

 s cb(1,"boxLabel")="Item 1"
 s cb(1,"inputValue")="a1"
 s cb(2,"boxLabel")="Item 2"
 s cb(2,"inputValue")="2b"
 s cb(3,"boxLabel")="Item 3"
 s cb(3,"inputValue")="c3"
 s cb(4,"boxLabel")="Item 4"
 s cb(4,"inputValue")=4
 s cb(5,"boxLabel")="Item 5"
 s cb(5,"inputValue")=5
 s cb(6,"boxLabel")="Item 6"
 s cb(6,"inputValue")=6
 d mergeArrayToSession^%zewdAPI(.cb,"myCBFields",sessid)

Combobox Fields
The ExtJS Combobox field provides a more sophisticated alternative to the HTML <select> field, and can act as a proper
combobox widget, eg:

Here’s an example of how to specify a combobox field:

 <ext4:comboBox fieldLabel="Choose Rank" name="rank" value="*" />

The <ext4:comboboxfield> tag maps to the Ext.form.field.Combobox class and any of its Config Options can be used as
attributes or child tags as appropriate.

To pre-populate a combobox field, use the standard EWD techniques for an HTML <select> tag. There are two steps to
this:

- defining the list of possible options: use the standard appendToList() method

- specifying the option to be pre-highlighted: use the setSessionValue() method

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 73

For example:

 d clearList^%zewdAPI("rank",sessid)
 d appendToList^%zewdAPI("rank","Guru","guru",sessid)
 d appendToList^%zewdAPI("rank","Master","master",sessid)
 d appendToList^%zewdAPI("rank","Student","student",sessid)
 d appendToList^%zewdAPI("rank","Instructor","teacher",sessid)
 d appendToList^%zewdAPI("rank","Assistant","aid",sessid)
 d appendToList^%zewdAPI("rank","Novice","novice",sessid)
 d setSessionValue^%zewdAPI("rank","student",sessid)

The clearList() method is used as a safeguard, to clear down any values that might already exist in the rank Session List
Array.

To use and/or validate a submitted combobox field value, simply get its value using the $$getSessionValue^%zewdAPI()
method:

 s value=$$getSessionValue^%zewdAPI("rank",sessid)

MultiSelect Combobox Field
You can optionally specify that multiple values can be selected from a combobox list. To do this, use the multiSelect=”true”
attribute and remove the value=”*” attribute, eg:

 <ext4:comboBox fieldLabel="Choose Rank" name="rank" multiSelect="true" />

To specify the values to be pre-selected, use the same EWD technique as you’d use for a <select multiple> tag, eg:

 d initialiseMultipleSelect^%zewdAPI("rank",sessid)
 d setMultipleSelectOn^%zewdAPI("rank","student",sessid)
 d setMultipleSelectOn^%zewdAPI("rank","aid",sessid)

When the form is submitted, you can determine which value(s) were selected by using the standard EWD multipleSelect
techniques, eg:

 i $$isMultipleSelectOn^%zewdAPI("rank","teacher",sessid) s result="Instructor was selected"

To create a local array of selected fields in the submitted combobox field:

 d getMultipleSelectValues^%zewdAPI("rank",.selected,sessid)
 ; format of array: selected("student") = "student"

Textarea Fields
Textarea fields are the ExtJS version of the HTML textarea, allowing multi-line text blocks to be created and edited using a
simple text editor interface, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 74

Here’s an example of how to specify a textarea field:

 <ext4:textareafield grow="true" name="message" fieldLabel="Message" anchor="100%" value="*" />

Note the inclusion of the value=”*” attribute which is essential if you want default text to be displayed when the field is
rendered.

The <ext4:textareafield> tag maps to the Ext.form.field.TextArea class and any of its Config Options can be used as
attributes or child tags as appropriate.

To pre-populate a textarea field, use the special EWD ExtJS-specific API for textarea form fields:

 	 setTextAreaValue^%zewdExt4Code()

For example, the following onBeforeRender method code will pre-populate the textarea field in the example above:

 n mess
 s mess(1)="This is line 1"
 s mess(2)="Line 2"
 s mess(3)="Line 3 is initially the last line"
 d setTextAreaValue^%zewdExt4Code(.mess,"message",sessid)

To use and/or validate the submitted response from a textarea field, you extract the values from the EWD TextArea Session
Array, again using the standard EWD API:

 n array
 d getTextArea^%zewdAPI("message",.array,sessid)
 ; array format:
 ; array(0) = number of lines of text
 ; array(lineNumber) = line of text

HTMLEditor Fields
The HTML Editor field is a substitute for the basic textarea field, allowing multi-line text blocks to be created and edited using
a rich text editor interface, eg:

Here’s an example of how to specify an HTML Editor field:

 <ext4:htmleditorfield name="comments" fieldLabel="Comments" enableColors="false" enableAlignments="false"
 value="*" />

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 75

Note the inclusion of the value=”*” attribute which is essential if you want default text to be displayed when the field is
rendered.

The <ext4:htmleditorfield> tag maps to the Ext.form.field.HtmlEditor class and any of its Config Options can be used as
attributes or child tags as appropriate.

To pre-populate an HtmlEditor field from a simple text array, use the special EWD ExtJS-specific API:

 	 setHtmlEditorValue^%zewdExt4Code()

For example, the following onBeforeRender method code will pre-populate the HtmlEdiitor field in the example above:

 n mess
 s mess(1)="This is line 1"
 s mess(2)="<i>Line 2</i>"
 s mess(3)="Line 3 is initially the last line"
 d setHtmlEditorValue^%zewdExt4Code(.mess,"comments",sessid)

However, if the text is relatively short, you can simply use setSessionValue(), eg:

 s text="This is line 1
<i>Line 2</i>
Line 3 is initially the last line

new last line!"
 d setSessionValue^%zewdAPI("comments",text,sessid)

Note that the highlighting is done using standard HTML tags.

When submitted, the contents of an HtmlEditor field is copied to the EWD Session as usual. If the content is short, it will be
copied to a simple scalar EWD Session Value. However, if the text is long, you may find that EWD has automatically broken
it up and merged it into an EWD Session Array. Note however that this automatic record splitting will not necessarily have
occurred at line boundaries.

Hence for short text, you can access it using:

 s comments=$$getSessionValue("comments",sessid)

But large amounts of text will be accessed using:

 n comments
 d $$mergeArrayFromSession(.comments,"comments",sessid)

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 76

The ExtJS Desktop

Demystifying the ExtJS Desktop
The ExtJS examples includes an amazingly cool concept called the ExtJS Desktop which emulates a Windows-style
desktop UI running within a browser. Strangely, there is no documentation readily available about how to build your own
equivalent UI.

However, you’ll find that by using EWD you can make use of this truly ground-breaking concept, and in a matter of a few
minutes you’ll have the basic outline of a web-based desktop that you can then customise to behave exactly how you wish,
and fully integrated with your Caché or GT.M back-end database.

A Simple Desktop
So let’s create a simple desktop application. First create a container page as follows:

<ext4:container rootPath="/ext-4">

 <ext4:desktop>
 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" />
 </ext4:desktop>

</ext4:container>

So what we’ve done is to specify that this container page is a desktop by using the <ext4:desktop> tag. This should be the
only immediate child tag of the <ext4:container> tag. Inside the <ext4:desktop> tag, we’ve defined a single <ext4:window>
tag. This has two effects:

- it defines a desktop icon

- if defines an initially empty window that will pop up when the icon is clicked. The height and width attributes define the
dimensions of the window. This window is then automatically populated by the fragment specified in the fragment
attribute.

So, let’s create a simple fragment to go into the window. Here’s the initial contents of dtWin.ewd:

<ext4:fragment>
 <ext4:panel html="This is your first EWD/ExtJS Desktop window!" border="0" />
</ext4:fragment>

OK that’s all you need to create! Now compile these two EWD pages and start the container page in your browser. Don’t
worry if the compilation for the container page takes longer than usual: it has a lot of work to do!

You should see the following:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 77

Try clicking on the “Test it” icon and the window should pop up:

Just like a Windows UI, you’ll see an icon for the window on the bottom status bar. You’ll find that you can move the
window, resize it and minimise it, just like a standard Windows window. Clicking on the bottom status bar icon will return it
to view. The window can be closed by clicking the X in the top right corner of the window.

Close the window and click the Start icon at the bottom left of the browser. Again, just like in Windows, a Start panel will
pop up, listing the icons on the desktop:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 78

You can open your test window by clicking on the “Test it” option in the Start panel.

The Logout Option
You’ll see a Logout option in the Start panel. If you click it, an alert will pop up telling you “undefined logout function”. That’s
because we haven’t told the desktop how to handle it. So let’s add a handler to the container page as follows:

<ext4:container rootPath="/ext-4">

 <ext4:desktop logoutFn="function() {alert('logging out!');}">
 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" />
 </ext4:desktop>

</ext4:container>

Recompile the container page and re-run it, then try clicking the Logout icon. It should now bring up your alert instead of
the default one. So now let’s create a typical logout mechanism. First create another fragment named logout.ewd:

<ext4:fragment>
 <ext4:js at="top">
 document.location.replace('/loggedout.html');
 </ext4:js>
</ext4:fragment>

Next, create a standard HTML file named loggedout.html that you’re going to save into your web-server’s root path:

<html>
 <head>
 <title>Logged Out</title>
 </head>
 <body>
 <h1>You have now been logged out!</h1>
 </body>
</html>

This page isn’t very pretty: you can style it up later if you wish. However, it’s enough for this simple demo. Finally edit your
logout handler function so that it fetches the logout fragment:

<ext4:container rootPath="/ext-4">

 <ext4:desktop logoutFn="function() {EWD.ajax.getPage({page:'logout'});}">
 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" />
 </ext4:desktop>

</ext4:container>

Recompile these pages and restart the desktop application. Now when you click the logout option in the Start panel, you’ll
be redirected to the loggedout.html page. By using the document.location.replace() function, you’ll find that you can’t use
the back button to return to the desktop, which is the safest technique to use for logging out a user.

Defining a UserName
You can define a user name that will appear in the desktop Start Panel. You do this in the Container Page’s onBeforeRender
method:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 79

<ext4:container rootPath="/ext-4" onBeforeRender="setusername^Ext4Demo">

 <ext4:desktop logoutFn="function() {EWD.ajax.getPage({page:'logout'});}">
 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" />
 </ext4:desktop>

</ext4:container>

This onBeforeRender method will be something like this:

setusername(sessid)
 d setSessionValue^%zewdAPI("EWD.desktop.username","Rob Tweed",sessid)
 QUIT ""
 ;

EWD.desktop.username is a reserved EWD Session Name.

You’ll now find that the Start Panel shows this username:

Adding a Login Mechanism
So let’s look at how you could build an initial login dialog that would validate the user’s credentials and bring up the desktop
showing them logged in with their username. You’d need to do this using two separate container pages, one for a login
dialogue, which, if successful, switches to the desktop container page.

First create a simple login form page, using a modal window. We’ll put this inside a viewport container so that it occupies all
the available browser space. Create a container page named login.ewd as follows:

<ext4:container rootPath="/ext-4">
 <ext4:viewPort layout="fit">
 <ext4:modalwindow title="Please Log In" height="200" width="400" layout="fit" autoShow="true">
 <ext4:formPanel bodyPadding="10">
 <ext4:textfield id="username" fieldLabel="Username:" allowBlank="false" value="" />
 <ext4:textfield id="password" inputType="password" fieldLabel="Password:" allowBlank="false" value="" />
 <ext4:submitbutton text="Submit" nextPage="loginRedirect" />
 </ext4:formPanel>
 </ext4:modalwindow>
 </ext4:viewPort>
</ext4:container>

Clicking the submit button will fetch a fragment named loginRedirect.ewd. It should contain the following:

<ewd:fragment onBeforeRender="login^Ext4Demo">
 <script language="javascript">
 document.location.replace('desktop.ewd');
 </script>
</ewd:fragment>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 80

The verification of the user’s credentials is performed by this fragment’s onBeforeRender method which contains:

login(sessid)
 n username,password
 d clearFieldErrors^%zewdExt4Code(sessid)
 s username=$$getSessionValue^%zewdAPI("username",sessid)
 s password=$$getSessionValue^%zewdAPI("password",sessid)
 i username="" d setFieldError^%zewdExt4Code("username","You must enter a username",sessid)
 i password="" d setFieldError^%zewdExt4Code("password","You must enter a password",sessid)
 i username'="rob" d setFieldError^%zewdExt4Code("username","Unrecognised username",sessid)
 i password'="1234" d setFieldError^%zewdExt4Code("password","Invalid password",sessid)
 QUIT $$formErrors^%zewdExt4Code(sessid)
 ;

This is hard-coded to only allow a username/password combination of rob/1234. You can modify it to use your existing
login validation mechanism.

The final change that is necessary is to reset the desktop.ewd page to no longer be a FirstPage: ie it cannot be loaded with
an untokenised URL, so it can only be started after a successful login:

<ext4:container isFirstPage="false" rootPath="/ext-4" onBeforeRender="setusername^Ext4Demo">

 <ext4:desktop logoutFn="function() {EWD.ajax.getPage({page:'logout'});}">
 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" />
 </ext4:desktop>

</ext4:container>

Try it out: you now have a completely secured desktop application with a login and logout mechanism.

Customising & Extending the Desktop

Window Contents
Since the windows that open are standard ExtJS window containers, you can populate them with any other ExtJS
components. What you put into the windows is entirely up to you: just put whatever combination of other ExtJS
components you want into the fragment that you specify for each window. Remember that this fragment can, in turn, fetch
others in the standard way described in this document. The one thing you must be careful of, however, is to ensure that at
any one time, only one instance of a particular id is present in the Container Page. ExtJS can get very confused if you have
more than one component with the same id.

Positioning Icons
You can add as many icons/windows as you like to the desktop. By default they will be added in a column on the left-hand
side, but you’ll find that eventually you’ll run out of room. You can place icons anywhere on the desktop yourself by adding
the position=”absolute”, left and top attributes, eg:

 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" position="absolute" left="200" top="100" />

Quickstart Icon
You can add a quickstart icon on the desktop’s bottom status bar by adding the quickstart=”true” attribute, eg:

 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" quickstart="true" />

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 81

Desktop Icons
By default, the desktop icon uses the ExtJS “accordion-shortcut” CSS class to define it. You can use other icons by
changing this class: use the iconCls attribute, eg:

 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" iconCls="cpu-shortcut" />

ExtJS provides a number of built-in classes you can try out:

- accordion-shortcut

- cpu-shortcut

- grid-shortcut

- notepad-shortcut

You could add your own, if required, by editing the /examples/desktop/css/desktop.css file that you’ll find in your ExtJS
distribution filesystem.

Window Icons
By default, the small icons within the window banners and in the Start panel use the ExtJS “accordion” CSS class to define
them. You can use other icons by changing this class: use the windowIconCls attribute, eg:

 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" windowIconCls="icon-grid" />

ExtJS provides a number of built-in classes you can try out:

- accordion

- icon-grid

- tabs

You could add your own, if required, by editing the /examples/desktop/css/desktop.css file that you’ll find in your ExtJS
distribution filesystem.

Desktop Wallpaper
The default wallpaper uses the ExtJS-provided file:

	 examples/desktop/wallpapers/Blue-Sencha.jpg

You can use a different wallpaper file by adding the wallpaper attribute to the <ext4:desktop> tag, eg:

<ext4:container isFirstPage="false" rootPath="/ext-4" onBeforeRender="setusername^Ext4Demo">

 <ext4:desktop logoutFn="function() {EWD.ajax.getPage({page:'logout'});}"
 wallpaper="/ext-4/examples/desktop/wallpapers/desk.jpg">
 <ext4:window title="My First Window" name="Test it" id="testIcon" width="600" height="400"
 fragment="dtWin1" />
 </ext4:desktop>

</ext4:container>

You’ll find a variety of ExtJS-defined wallpapers in the /examples/desktop/wallpapers folder.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 82

Dynamically-defined Desktop
The previous examples have used explicitly-defined tags to describe the desktop. It is often desirable to make the desktop
completely dynamically-defined. For example, you may want to adjust the range of icons that are put on the desktop
according to the user’s profile. EWD allows you to dynamically define all aspects of a desktop in much the same way as
Grids, by using a simple EWD Session Array.

To create a dynamically-defined desktop, simply provide the <ext4:desktop> tag and add the sessionName attribute, eg:

<ext4:container isFirstPage="false" rootPath="/ext-4" onBeforeRender="setusername^Ext4Demo">

 <ext4:desktop sessionName="desktop" />

</ext4:container>

The onBeforeRender method must now be extended to define the desktop and its properties, eg:

desktopConfig2(sessid)
 n desktop
 ;
 s desktop("username")="Rob Tweed"
 s desktop("wallpaper")="/ext-4/examples/desktop/wallpapers/desk.jpg"
 ;
 s desktop("logoutFn")="function() {alert('logging you out!');}"
 s desktop("windows",1,"title")="Simpsons Grid"
 s desktop("windows",1,"name")="Simpsons"
 s desktop("windows",1,"iconCls")="accordion-shortcut"
 s desktop("windows",1,"id")="myWin1"
 s desktop("windows",1,"width")=500
 s desktop("windows",1,"height")=350
 s desktop("windows",1,"fragment")="fragtest"
 s desktop("windows",1,"quickStart")="true"
 ;
 s desktop("windows",2,"title")="My 2nd window"
 s desktop("windows",2,"name")="Second Window"
 s desktop("windows",2,"iconCls")="accordion-shortcut"
 s desktop("windows",2,"windowIconCls")="accordion"
 s desktop("windows",2,"id")="myWin2"
 s desktop("windows",2,"width")=550
 s desktop("windows",2,"height")=400
 s desktop("windows",2,"fragment")="dtWin1"
 s desktop("windows",2,"position")="absolute"
 s desktop("windows",2,"left")=200
 s desktop("windows",2,"top")=100
 s desktop("windows",2,"quickStart")="true"
 ;
 d mergeArrayToSession^%zewdAPI(.desktop,"desktop",sessid)
 QUIT ""

Hopefully the mapping between this Session Array-based description of the desktop and the explicitly-defined tab-based
version described previously is intuitive and obvious. Try experimenting with the properties and their values. You’ll now have
a desktop container page that only needs to be compiled once. Every time it runs, the actual characteristics and content of
the desktop will now depend on the EWD Session Array contents that are generated at run-time!

You now have at your disposal, one of the most powerful web application frameworks in the world: the combination of ExtJS
v4 and EWD!

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 83

Charts

ExtJS Charts
ExtJS version 4 includes a comprehensive charting capability, allowing you to create a number of types of graphs and
charts, including:

- line plots

- scatter plots

- histograms

- pie charts

- radar charts

Furthermore, these charts can be made highly dynamic.

EWD makes charting accessible and integrates ExtJS charts with GT.M and Caché in the same way as the other ExtJS
components. Additionally, because the chart component is just another ExtJS component, charts can be embedded inside
any other container components, such as panels and windows, and can be injected into an EWD/ExtJS container page via
EWD fragments.

The <ext4:chart> Tag
All the possible types of ExtJS chart are created using the <ext4:chart> tag. This tag is used in conjunction with several
other child tags that allow you to define such things as the axes and the data series. As with all the other ExtJS v4 tags,
there is a one-to-one correspondence with the underlying ExtJS classes and their Config Options.

The <ext4:chart> tag maps to the Ext.chart.Chart class. You can define a chart using explicit tags to define the axes, data
series etc, or alternatively you can define the entire chart dynamically. In both cases, you define the data for your chart using
an EWD Session array. EWD generates the appropriate JSON store automatically for you.

A simple Line Plot
It’s easiest to explain the use of the Chart tag by referring to an example. Take the following simple line chart:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 84

This was created using the following tags:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >

 <ext4:chart sessionName="myChart" width="500" height="300">
 <ext4:axis type="Numeric" position="left" fields="line1" title="Score" grid="true" minimum="0" />
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" />
 </ext4:chart>

</ext4:container>

The onBeforeRender method for this Container Page defines the data that will be used by the chart:

getChartData2(sessid)
 n chart
 ;
 s chart("line1",1)=10
 s chart("line1",2)=9
 s chart("line1",3)=5
 s chart("line1",4)=2
 s chart("line1",5)=4.7
 s chart("month",1)="Jan"
 s chart("month",2)="Feb"
 s chart("month",3)="Mar"
 s chart("month",4)="Apr"
 s chart("month",5)="May"
 d mergeArrayToSession^%zewdAPI(.chart,"myChart",sessid)
 QUIT ""

The “line1”-subscripted array values define the scores for each month, numbered 1 to 5. The “month”-subscripted array
values define the names of each month. Hence, the score for March is defined by the array member:

 chart(“line1”,3)

because month 3 is defined as “Mar”

This array is merged into an EWD Session Array named “myChart”

This Session Array is referenced by the <ext4:chart> tag:

 <ext4:chart sessionName="myChart" width="500" height="300">

The dimensions of the chart are also defined by this tag.

The axes for the chart are defined using the <ext4:axis> tags. The x-axis, showing the months is defined using:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 85

 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />

This axis is a “Category” type because each “month”-subscripted array element represents an instance of a month that is to
be plotted on the x (or bottom) axis.

The y-axis will represent the score values, so it’s defined using:

 <ext4:axis type="Numeric" position="left" fields="line1" title="Score" grid="true" minimum="0" />

This time the axis is a “Numeric” type, as it will be representing the numeric values of the “line1”-subscripted array members.

Finally, we have to tell ExtJS what type of plot to use. In this example we want a line plot. This is defined using the
<ext4:series> tag:

 <ext4:series type="line" axis="left" xField="month" yField="line1" />

The xField and yField attributes tell the ExtJS Chart which subscripts to use for the x- and y-coordinates when plotting the
points. The axis attribute defines which axis to bind the values to: in this case the y-axis.

Animation and Fills
You can add more life and interest to your chart by using some of the additional Config Options provided by ExtJS. You’ll
find these explained in the ExtJS documentation and examples, but two simple things you can try adding are shown in bold
below:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >

 <ext4:chart sessionName="myChart" width="500" height="300" animate="true">
 <ext4:axis type="Numeric" position="left" fields="line1" title="Score" grid="true" minimum="0" />
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 </ext4:chart>

</ext4:container>

Adding a Second Line
We can easily add a second line to our graph. First we need to define the additional data in the onBeforeRender method:

getChartData2(sessid)
 n chart
 ;
 s chart("line1",1)=10
 s chart("line1",2)=9
 s chart("line1",3)=5
 s chart("line1",4)=2
 s chart("line1",5)=4.7
 s chart("line2",1)=12
 s chart("line2",2)=8
 s chart("line2",3)=2
 s chart("line2",4)=14
 s chart("line2",5)=4
 s chart("month",1)="Jan"
 s chart("month",2)="Feb"
 s chart("month",3)="Mar"
 s chart("month",4)="Apr"
 s chart("month",5)="May"
 d mergeArrayToSession^%zewdAPI(.chart,"myChart",sessid)
 QUIT ""

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 86

The y-axis has to be redefined so that it encompasses the value range for both the line1 and line2 values. Instead of the
simple “fields” attribute, we have to use the <ext4:field> tag:

 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>

Note: if you specify any other child tags inside an <ext4:axis> tag, then you must wrap the <ext4:field> tags in an
<ext4:fields> tag, eg:

 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 <ext4:grid>
 <ext4:odd opacity="1" fill="##ddd" stroke="##bbb" strokewidth="1" />
 </ext4:grid>
 </ext4:axis>

All that remains is to add a second <ext4:series> tag for the line2 data:

 <ext4:series type="line" axis="left" xField="month" yField="line2" />

Put this all together and our new 2-line chart is defined as follows:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >

 <ext4:chart sessionName="myChart" width="500" height="300" animate="true">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2" />
 </ext4:chart>

</ext4:container>

and the chart will now appear as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 87

Embedding a Chart in a Panel
We can easily embed our Chart inside a Panel. Here’s an example:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >

 <ext4:panel title="Demonstration Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2" />
 </ext4:chart>
 </ext4:panel>

</ext4:container>

The key point to note is that in this example, we’re wanting the chart to occupy the space available inside the Panel. To do
this, the panel’s layout is specified as “fit”. The chart tag’s height and width attributes are substituted with the flex=”1”
attribute. It now renders as shown below:

You’ll find that if you modify the panel’s dimensions, recompile and re-run, the charts dimensions will automatically change
accordingly.

Using Charts With Fragments
We can even split our example into a Container page that just defines the Panel, with the Chart delivered into it via a
Fragment. Here’s the Container Page:

<ext4:container rootPath="/ext-4" >
 <ext4:panel title="Demonstration Chart" layout="fit" height="400" width="500" addPage="chart2df" />
</ext4:container>

The fragment, chart2df.ewd, is as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 88

<ext4:fragment onBeforeRender="getChartData2^Ext4Demo">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="xMonth" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2" />
 </ext4:chart>
</ext4:fragment>

The chart will now inject itself into the Container page’s panel.

Adding a background
Add a background by using the <ext4:background>, <ext4:gradient> and <ext4:stops> tags. These map directly to the
background, gradient and stops Config Options that you’ll find documented in the ExtJS API and examples pages. For
example:

<ext4:fragment onBeforeRender="getChartData2^Ext4Demo">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="xMonth" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2" />
 </ext4:chart>

 <ext4:background>
 <ext4:gradient angle="45">
 <ext4:stops>
 <ext4:stop value="0" color="##ffffff" />
 <ext4:stop value="100" color="##eaf1f8" />
 </ext4:stops>
 </ext4:gradient>
 </ext4:background>

</ext4:fragment>

 Note the double pound (#) signs for the color attribute values. A preceding # indicates to EWD that the value is an EWD
Session Value. Adding an extra # escapes this, so EWD knows to use, for example, the value “#ffffff” for the first stop colour,
rather than the value of an EWD Session Variable named “ffffff”.

Adding A Legend
Adding a legend is simply a matter of adding the <ext4:legend> tag to the Chart, eg:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 89

<ext4:fragment onBeforeRender="getChartData2^Ext4Demo">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="xMonth" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2" />
 </ext4:chart>

 <ext4:legend position="bottom" />

 <ext4:background>
 <ext4:gradient angle="45">
 <ext4:stops>
 <ext4:stop value="0" color="##ffffff" />
 <ext4:stop value="100" color="##eaf1f8" />
 </ext4:stops>
 </ext4:gradient>
 </ext4:background>

</ext4:fragment>

The rendered chart will now look like this:

Adding Tips
You can add tips: small customisable panels that pop up when you mouse-over the data points in a series. Use the
<ext4:tips> tag for this. For example we can add them to the line2 series:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 90

<ext4:fragment onBeforeRender="getChartData2^Ext4Demo">

 <ext4:js at="top">
 EWD.ext4.showTip = function(storeItem, item) {
 this.setTitle(storeItem.get('month') + ': ' + storeItem.get('line2'));
 };
 </ext4:js>

 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="xMonth" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2">
 <ext4:tips trackMouse="true" width="80" height="30" renderer=".EWD.ext4.showTip" />
 </ext4:series>
 </ext4:chart>

 <ext4:legend position="bottom" />

 <ext4:background>
 <ext4:gradient angle="45">
 <ext4:stops>
 <ext4:stop value="0" color="##ffffff" />
 <ext4:stop value="100" color="##eaf1f8" />
 </ext4:stops>
 </ext4:gradient>
 </ext4:background>

</ext4:fragment>

In the example above, we’ve broken out the function to reduce the length and complexity of the <ext4:tips> tag in order to
potentially improve its readability and maintainability. However, the following would also be valid:

 <ext4:tips trackMouse="true" width="80" height="30" renderer="function(storeItem, item) {
this.setTitle(storeItem.get('month') + ': ' + storeItem.get('line2'));}" />

Moving your mouse pointer over the line2 data points will bring up a tooltip panel that displays that point’s co-ordinates.

Adding Listeners to Fetch Other Fragments
For even more interactivity, you can add listeners to a series. For example, you might want to be able to drill down into the
data represented by a point in the data series and pop up a window containing a grid. Here’s an example:

First, add an itemmousedown listener to the line2 series:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 91

<ext4:fragment onBeforeRender="getChartData2^Ext4Demo">

 <ext4:js at="top">
 EWD.ext4.showTip = function(storeItem, item) {
 this.setTitle(storeItem.get('month') + ': ' + storeItem.get('line2'));
 };
 EWD.ext4.popupWindow = function(item) {
 var nvp="month=" + item.storeItem.get('month') + "&score=" + item.storeItem.get('line2');
 EWD.ajax.getPage({page:'chartPopup',nvp:nvp});
 };
 </ext4:js>

 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="xMonth" />
 <ext4:series type="line" axis="left" xField="month" yField="line1" fill="true" />
 <ext4:series type="line" axis="left" xField="month" yField="line2">
 <ext4:tips trackMouse="true" width="80" height="30" renderer=".EWD.ext4.showTip" />
 <ext4:listeners>
 <ext4:listener itemmousedown="function(item) {EWD.ext4.popupWindow(item)}" />
 </ext4:listeners>
 </ext4:series>
 </ext4:chart>

 <ext4:legend position="bottom" />

 <ext4:background>
 <ext4:gradient angle="45">
 <ext4:stops>
 <ext4:stop value="0" color="##ffffff" />
 <ext4:stop value="100" color="##eaf1f8" />
 </ext4:stops>
 </ext4:gradient>
 </ext4:background>

</ext4:fragment>

This will send a request for a fragment named chartPopup.ewd whenever a data point in the line2 series is clicked. The
values of the month and score for the clicked data point will be sent as additional name/value pairs with the request.

The chartPopup.ewd fragment might look like this:

<ext4:fragment onBeforeRender="getChartPoint^Ext4Demo">
 <ext4:window title="Drill down" autoShow="true" height="200" width="400"
 html="Score for <?= #month ?> = <?= #score ?>" />
</ext4:fragment>

and its onBeforeRender method will simply copy the request name/value pairs to corresponding EWD Session variables:

getChartPoint(sessid)
 d copyRequestValueToSession^%zewdAPI("month",sessid)
 d copyRequestValueToSession^%zewdAPI("score",sessid)
 QUIT ""

So now when you click on a data point, the window will pop up:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 92

Of course your pop-up window could use any ExtJS components such as a grid to display more details related to the
selected data point that the user clicks.

Area Charts
We can very easily turn our example line chart into a stacked area chart. We just redefine the chart to have a single series
with type=”area” and instead of a single yField value, we use the <ext4:yFields> tag to specify that both the line1 and line2
data arrays are to be included in the series, ie:

 <ext4:series type="area" axis="left" xField="month">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 </ext4:series>

Here’s our previous example, redefined as a stacked area chart:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 93

<ext4:fragment onBeforeRender="getChartData2^Ext4Demo">

 <ext4:js at="top">
 EWD.ext4.showTip = function(storeItem, item) {
 this.setTitle(storeItem.get('month') + ': ' + storeItem.get('line2'));
 };
 EWD.ext4.popupWindow = function(item) {
 var nvp="month=" + item.storeItem.get('month') + "&score=" + item.storeItem.get('line2');
 EWD.ajax.getPage({page:'chartPopup',nvp:nvp});
 };
 </ext4:js>

 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 <ext4:grid>
 <ext4:odd opacity="1" fill="##ddd" stroke="##bbb" strokewidth="1" />
 </ext4:grid>
 </ext4:axis>

 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />

 <ext4:series type="area" axis="left" xField="month" highlight="true">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 <ext4:tips trackMouse="true" width="80" height="30" renderer=".EWD.ext4.showTip" />
 <ext4:listeners>
 <ext4:listener itemmousedown="function(item) {EWD.ext4.popupWindow(item)}" />
 </ext4:listeners>
 </ext4:series>

 <ext4:legend position="bottom" />

 <ext4:background>
 <ext4:gradient id="backgroundGradient" angle="45">
 <ext4:stops>
 <ext4:stop value="0" color="##ffffff" />
 <ext4:stop value="100" color="##eaf1f8" />
 </ext4:stops>
 </ext4:gradient>
 </ext4:background>

 </ext4:chart>

</ext4:fragment>

This will now render as follows:

You’ll notice a few extra features have also been added to this example:

- when you move your mouse pointer over the coloured areas, you’ll see a vertical bar also appearing. This is is due to
the hightlight=”true” attribute that has been added to the <ext4:series> tag;

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 94

- the odd-numbered y-coordinate grid blocks have been shaded a darker colour. This is due to the <ext4:grid> tag that
has been added inside the y-axis (Score) <ext4:axis> tag. Note that by adding the <ext4:grid> tag, the <ext4:field>
tags had to be wrapped inside an <ext4:grids> tag.

You’ll find that the dynamic behaviour that we created for the line chart example is all still working for this area chart version.

Bar Charts
Bar charts are horizontally-plotted histograms. We can use our previous example’s dynamically-defined data and create a
bar chart from it, plotting the line1 data array:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Bar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="bottom" fields="line1" title="Score" grid="true" minimum="0" />
 <ext4:axis type="Category" position="left" fields="month" grid="true" title="Month" />
 <ext4:series type="bar" axis="bottom" xField="month" yField="line1" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

This will render as follows:

For simplicity, the above example shows a simple bar-chart in a Container page. However, all the enhancements that were
applied to the previous chart examples can be applied to a bar chart also.

Grouped Bar Charts
We can create a grouped bar chart that plots both our line1 and line2 data arrays. The two key changes that must be made
are:

- the bottom (x-) axis needs to take account of the values in both data arrays, so we must add an <ext4:fields> tag
inside the <ext4:axis> tag

- the series yFields needs to include both data arrays, so we need to add an <ext4:yFields> tag inside the <ext4:series>
tag

- for clarity we’ll also add a legend. This will allow us to relate the bar colours to the data arrays

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 95

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Bar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="bottom"title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 </ext4:axis>
 <ext4:axis type="Category" position="left" fields="month" grid="true" title="Month" />
 <ext4:series type="bar" axis="bottom" xField="month">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 </ext4:series>
 <ext4:legend position="bottom" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

The chart now renders as follows:

Stacked Bar Charts
Alternatively we can display the two data arrays as a stacked bar chart. Simply add the attribute stacked=”true” to the
<ext4:series> tag:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Bar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="bottom"title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 </ext4:axis>
 <ext4:axis type="Category" position="left" fields="month" grid="true" title="Month" />
 <ext4:series type="bar" axis="bottom" xField="month" stacked="true">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 </ext4:series>
 <ext4:legend position="bottom" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 96

The bar chart now renders as follows:

Coumn Charts
Column charts are vertically-plotted histograms. We can use our previous example’s dynamically-defined data and create a
coumn chart from it, plotting the line1 data array:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Column Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" fields="line1" title="Score" grid="true" minimum="0" />
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="column" axis="left" xField="month" yField="line1" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

This will render as follows:

For simplicity, the above example shows a simple column-chart in a Container page. However, all the enhancements that
were applied to the previous chart examples can be applied to a column chart also.

Grouped Column Charts
We can create a grouped column chart that plots both our line1 and line2 data arrays. The two key changes that must be
made are:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 97

- the left (y-) axis needs to take account of the values in both data arrays, so we must add an <ext4:fields> tag inside
the <ext4:axis> tag

- the series yFields needs to include both data arrays, so we need to add an <ext4:yFields> tag inside the <ext4:series>
tag

- for clarity we’ll also add a legend. This will allow us to relate the column colours to the data arrays

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Bar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="bottom"title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 </ext4:axis>
 <ext4:axis type="Category" position="left" fields="month" grid="true" title="Month" />
 <ext4:series type="bar" axis="bottom" xField="month">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 </ext4:series>
 <ext4:legend position="bottom" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

The chart now renders as follows:

Stacked Column Charts
Alternatively we can display the two data arrays as a stacked column chart. Simply add the attribute stacked=”true” to the
<ext4:series> tag:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 98

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Column Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="column" axis="left" xField="month" stacked="true">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 </ext4:series>
 <ext4:legend position="bottom" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

The column chart now renders as follows:

Rotating Axis Labels
Another enhancement you can make to charts is to rotate the labels on an axis. This can be useful if the label names are
long and would otherwise not fit within the grid distances. The technique is best described by example. We can modify the
previous Column Chart above to rotate the x-axis labels:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData2^Ext4Demo" >
 <ext4:panel title="Column Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" animate="true" flex="1">
 <ext4:axis type="Numeric" position="left" title="Score" grid="true" minimum="0">
 <ext4:fields>
 <ext4:field name="line1" />
 <ext4:field name="line2" />
 </ext4:fields>
 </ext4:axis>
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month">
 <ext4:label>
 <ext4:rotate degrees="315" />
 </ext4:label>
 </ext4:axis>
 <ext4:series type="column" axis="left" xField="month" stacked="true">
 <ext4:yfields>
 <ext4:yfield name="line1" />
 <ext4:yfield name="line2" />
 </ext4:yfields>
 </ext4:series>
 <ext4:legend position="bottom" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 99

The Column chart will now render as follows:

Gauge Charts
ExtJS provides a rather different form of chart: gauges. These can be used to graphically represent a single value, for
example as part of a dashboard. The ExtJS API for defining a gauge to display a single value is actually quite complex. The
EWD Chart and associated tags can be used to map directly to this low-level complex UI, but EWD’s ability to define higher-
level abstractions has been used to provide an additional set of attributes that reduce the complexity for the developer (and
hence improve the readability and maintainability), making it now very simple to create an ExtJS gauge whose value can be
defined by a simple EWD Session Value.

Here’s a simple, default example:

<ext4:container rootPath="/ext-4" onBeforerender="setGauge^Ext4Demo">
 <ext4:panel title="Simple Gauge" layout="fit" height="400" width="500">
 <ext4:chart type="gauge" value="#gauge" flex="1" insetPadding="35">
 <ext4:axis minimum="0" maximum="50" steps="10" margin="10" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

The onBeforeRender method is also very simple, simply creating a Session variable named gauge:

setGauge(sessid)
 d setSessionValue^%zewdAPI("gauge",$r(50),sessid)
 QUIT ""

This renders as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 100

We can add a number of additional features to this simple chart:

- the colours used for below and above the value in the gauge can be controlled by adding an <ext4:series> tag and
using two special attributes: color1 and color2.

- you can turn the gauge into a semi-donut shape by adding the donut attribute to the <ext4:series> tag. This takes a
value between 0 and 100. EWD otherwise supplies a default of donut=”false” which creates the semi-circular gauge.

- EWD provides a built-in, simple-to-use Javascript function (EWD.ext4.setGauge(id,value)) that allows you to
dynamically update the value of the gauge. If you want to use this feature, you’ll need to define an id for the gauge.
To add more interest, add the animate=”true” attribute to the <ext4:chart> tag.

The modified example below demonstrates all these additional features:

<ext4:container rootPath="/ext-4" onBeforerender="setGauge^Ext4Demo">

 <script type="text/javascript">
 setTimeout(function() {
 EWD.ext4.setGauge("myGauge",4);
 },3000);
 setTimeout(function() {
 EWD.ext4.setGauge("myGauge",44);
 },6000);
 </script>

 <ext4:panel title="Simple Gauge" layout="fit" height="400" width="500">
 <ext4:chart type="gauge" id="myGauge" animate="true" value="#gauge" flex="1" insetPadding="35">
 <ext4:axis minimum="0" maximum="50" steps="10" margin="10" />
 <ext4:series donut="75" color1="#82B525" color2="#cae" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

This initially renders as follows, but you’ll find that after 3 and 6 seconds, the gauge value will automatically change:

You can add further interactivity to a gauge by using the other techniques that were described earlier in this chapter that
modify the <ext4:axis> and/or the <ext4:series> tag.

Pie Charts
EWD and ExtJS make it easy to create pie charts. These can be either simple, static ones, or highly dynamic. Let’s start
with a simple one. We’ll make use of the same data arrays that we’ve previously used for the line, bar and column charts:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 101

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <ext4:panel title="Pie Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" flex="1" insetPadding="50">
 <ext4:series type="pie" field="line1" showInLegend="true">
 <ext4:label field="month" display="rotate" contrast="true" font="18px Arial" />
 </ext4:series>
 </ext4:chart>
 </ext4:panel>
</ext4:container>

Just a reminder: the onBeforeRender method is as follows:

getChartData3(sessid)
 ;
 n chart,i
 ;
 s chart("line1",1)=10
 s chart("line1",2)=7
 s chart("line1",3)=5
 s chart("line1",4)=2
 s chart("line1",5)=4
 s chart("line2",1)=12
 s chart("line2",2)=8
 s chart("line2",3)=2
 s chart("line2",4)=14
 s chart("line2",5)=4
 s chart("month",1)="Jan"
 s chart("month",2)="Feb"
 s chart("month",3)="Mar"
 s chart("month",4)="Apr"
 s chart("month",5)="May"
 d mergeArrayToSession^%zewdAPI(.chart,"myChart",sessid)
 QUIT ""

So our example is going to plot the line1 data array as a pie chart. It will appear as follows:

We can add a highlight feature that will make the segments pop out when the mouse pointer is moved over them. The
margin attribute determines the amount of movement:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <ext4:panel title="Pie Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" flex="1" animate="true" insetPadding="50">
 <ext4:series type="pie" field="line1" showInLegend="true">
 <ext4:label field="month" display="rotate" contrast="true" font="18px Arial" />
 <ext4:highlight>
 <ext4:segment margin="20" />
 </ext4:highlight>
 </ext4:series>
 </ext4:chart>
 </ext4:panel>
</ext4:container>

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 102

We can represent the pie as a donut instead of a complete circle by adding the donut attribute to the <ext4:series> tag, eg:

<ext4:series type="pie" donut="50" field="line1" showInLegend="true">

Additionally we can add a tool-tip panel that we can customise. In this case we’ll display the relative percentage of the pie
represented by the segment we mouse-over:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <script type="text/javascript">
 EWD.ext4.showPieTip = function(storeItem, item) {
 var total = 0;
 Ext.getCmp('myPie').store.each(function(rec) {
 total += rec.get('line1');
 });
 this.setTitle(storeItem.get('month') + ': ' + Math.round(storeItem.get('line1') / total * 100) + '%');
 };
 </script>
 <ext4:panel title="Pie Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" id="myPie" animate="true" flex="1" insetPadding="50">
 <ext4:series type="pie" donut="50" field="line1" showInLegend="true">
 <ext4:tips trackMouse="true" width="140" height="28" renderer=".EWD.ext4.showPieTip" />
 <ext4:highlight>
 <ext4:segment margin="10" />
 </ext4:highlight>
 <ext4:label field="month" display="rotate" contrast="true" font="18px Arial" />
 </ext4:series>
 </ext4:chart>
 </ext4:panel>
</ext4:container>

Try it out and see for yourself!

Radar Charts
Another way to present our data arrays is to use a Radar Chart. Here’s a simple example, using the same data Session
Array we’ve used in previous Chart examples:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <ext4:panel title="Radar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" flex="1">
 <ext4:axis type="Radial" position="radial" />
 <ext4:series type="radar" xField="month" yField="line1" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

This will render as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 103

There are many customisations we can apply to this chart. Instead of the plotted area being filled, we can just plot the
joining lines. We’ll also thicken the plot line to a stroke-width of 2 (note the single quotes around the stroke-width attribute
which avoids parsing problems due to the hyphen):

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <ext4:panel title="Radar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" theme="Category4" flex="1" animate="true">
 <ext4:axis type="Radial" position="radial" />
 <ext4:series type="radar" xField="month" yField="line1" showMarkers="true">
 <ext4:style 'stroke-width'="2" fill="none" />
 </ext4:series>
 </ext4:chart>
 </ext4:panel>
</ext4:container>

The Chart will now look something like this:

Try changing the theme and see the effect. There are 6 Category themes: “Category1” to “Category6”.

You can add further series to plot multiple lines, eg we could add the line2 array:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <ext4:panel title="Radar Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" theme="Category4" flex="1" animate="true">
 <ext4:axis type="Radial" position="radial" />
 <ext4:series type="radar" xField="month" yField="line1" showMarkers="true">
 <ext4:style 'stroke-width'="2" fill="none" />
 </ext4:series>
 <ext4:series type="radar" xField="month" yField="line2" showMarkers="true">
 <ext4:style 'stroke-width'="2" fill="none" />
 </ext4:series>
 </ext4:chart>
 </ext4:panel>
</ext4:container>

and it will now look like this:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 104

All the other animation techniques described earlier in this chapter are also available for Radar charts.

Scatter Charts
Scatter charts are another means of visualising a data array, but with an additional optional feature: you can use the radius or
colour of the points to represent a third property value.

Let’s start with a simple Scatter Chart using our example data arrays:

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo">
 <ext4:panel title="Scatter Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" theme="Category2" flex="1" animate="true">
 <ext4:axis type="Numeric" position="left" title="Scores" fields="line1" grid="true" minimum="0" />
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="scatter" axis="left" xField="month" yField="line1" />
 </ext4:chart>
 </ext4:panel>
</ext4:container>

This will simply plot the line1 data array and will render as follows:

We can apply the values of the line2 data array to these points, and represent the line2 values using the radius of the marker
point. EWD provides a built-in function to make this quick and easy. It just takes a few simple modifications to our example:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 105

<ext4:container rootPath="/ext-4" onBeforeRender="getChartData3^Ext4Demo" >
 <ext4:panel title="Scatter Chart" layout="fit" height="400" width="500">
 <ext4:chart sessionName="myChart" theme="Category2" flex="1" animate="true">
 <ext4:axis type="Numeric" position="left" fields="line1" title="Scores" grid="true" minimum="0"
 maximum="12" />
 <ext4:axis type="Category" position="bottom" fields="month" grid="true" title="Month" />
 <ext4:series type="scatter" axis="left" xField="month" yField="line1">
 <ext4:markerConfig radius="0" />
 <ext4:listeners>
 <ext4:listener afterRender="EWD.ext4.setScatterRadius(this,'line2',2)" />
 </ext4:listeners>
 </ext4:series>
 </ext4:chart>
 </ext4:panel>
</ext4:container>

The <ext4:marker> tag sets the initial rendering radius to zero so that the original plotted radius doesn’t bleed through. The
maximum value of the y-axis has been increased to 12 in order to make room for the increased marker radii.

The EWD.ext4.setScatterRadius() function is invoked when the series has finished rendering. Its arguments are:

- this: points to the series object

- the name of the data array to be used to set the radii of the marker points. In the example above we want to use the
line2 array values that correspond to the plotted line1 values.

- the factor by which the data array values should be multiplied to create an appropriate range of plotted radii. If not
specifed, a factor of 1 is used as the default.

The Scatter plot will now render as follows:

Once again, you can add to Scatter Charts the other forms of interactivity that were described earlier in this chapter.

Dynamically-Defined Charts
All the Chart examples above have used explicitly-defined Axes and Series, defined using tags. However, just as with Grids,
RadioGroup Fields and CheckboxGroup Fields, you can also define the axes and series of your charts dynamically, at run-
time, in EWD Session Arrays.

To create a completely dynamic chart, you create your data array as normal, but you also create a second EWD Session
Array which has three first subscripts:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 106

- “axes” (mandatory)

- “series” (mandatory)

- “legend” (optional)

These contain the definitions for the axes, series and legend of your chart respectively.

Under these arrays you simply create a sub-array structure that corresponds to the Config Options that you would use if you
were writing hand-crafted ExtJS Javascript code. EWD converts these arrays at run-time to JSON format using its inbuilt
array-to-JSON handler.

An example will best describe what you need to do. First create a Container Page as follows:

<ext4:container rootPath="/ext-4">
 <ext4:window title="My Window" height="500" width="700" layout="fit" autoShow="true" addPage="chart6" />
</ext4:container>

Next create a fragment named chart6.ewd. It just contains an <ext4:chart> tag. Its definition is defined via the
chartDefinition attribute whose value is an EWD Session Array name:

<ext4:fragment onBeforeRender="getChartDef^Ext4Demo" >
 <ext4:chart sessionName="myChart" chartDefinition="myChartDef" style="background:#fff" />
</ext4:fragment>

The onBeforeRender method must not only create the Session Array named “myChart” (containing the data for the chart), it
must also create the chart definition Session Array named “myChartDef”. We want to create the following JSON structures
that will define the axes, series and legend respectively for an area chart:

axes = [{
 "fields": ["data1", "data2", "data3", "data4", "data5"],
 "grid": {
 "fill": "#ddd",
 "opacity": 1,
 "stroke": "#bbb",
 "stroke-width": 1
 },
 "minumum": 0,
 "position": "left",
 "title": "Number of Hits",
 "type": "Numeric"
}, {
 "fields": ["name"],
 "grid": true,
 "label": {
 "rotate": {
 "degrees": 315
 }
 },
 "position": "bottom",
 "title": "Month of the Year",
 "type": "Category"
}];

series = [{
 "axis": "left",
 "highlight": false,
 "style": {
 "opacity": .93
 },
 "type": "area",
 "xField": "name",
 "yField": ["data1", "data2", "data3", "data4", "data5"]
}];

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 107

legend = {
 "position": "bottom"
};

The chartDef array in the example onBeforeRender method below generates these JSON structures. Hopefully the mapping
logic is intuitive:

getChartDef(sessid)
 n chartDef
 ;
 i $$getChartData(sessid) ; create the data Session Array (see below)
 ;
 ; create axis 1:
 ;
 s chartDef("axes",1,"type")="Numeric"
 s chartDef("axes",1,"position")="left"
 s chartDef("axes",1,"title")="Number of Hits"
 s chartDef("axes",1,"grid")="true"
 s chartDef("axes",1,"minumum")="0"
 s chartDef("axes",1,"fields",1)="data1"
 s chartDef("axes",1,"fields",2)="data2"
 s chartDef("axes",1,"fields",3)="data3"
 s chartDef("axes",1,"fields",4)="data4"
 s chartDef("axes",1,"fields",5)="data5"
 s chartDef("axes",1,"grid","opacity")="1"
 s chartDef("axes",1,"grid","fill")="#ddd"
 s chartDef("axes",1,"grid","stroke")="#bbb"
 s chartDef("axes",1,"grid","stroke-width")="1"
 ;
 ; create axis 2:
 ;
 s chartDef("axes",2,"type")="Category"
 s chartDef("axes",2,"position")="bottom"
 s chartDef("axes",2,"fields",1)="name"
 s chartDef("axes",2,"grid")="true"
 s chartDef("axes",2,"title")="Month of the Year"
 s chartDef("axes",2,"label","rotate","degrees")="315"
 ;
 ; create the series definition:
 ;
 s chartDef("series",1,"type")="area"
 s chartDef("series",1,"highlight")="false"
 s chartDef("series",1,"axis")="left"
 s chartDef("series",1,"xField")="name"
 s chartDef("series",1,"yField",1)="data1"
 s chartDef("series",1,"yField",2)="data2"
 s chartDef("series",1,"yField",3)="data3"
 s chartDef("series",1,"yField",4)="data4"
 s chartDef("series",1,"yField",5)="data5"
 s chartDef("series",1,"style","opacity")=0.93
 ;
 ; finally define the legend:
 ;
 s chartDef("legend","position")="bottom"
 ;
 ; save the array to the EWD Session:
 d mergeArrayToSession^%zewdAPI(.chartDef,"myChartDef",sessid)
 QUIT ""
 ;
getChartData(sessid)
 n chart,i
 s chart("data1",1)=10
 s chart("data1",2)=7
 s chart("data1",3)=5
 s chart("data1",4)=2
 s chart("data1",5)=4
 s chart("name",1)="metric 1"
 s chart("name",2)="metric 2"
 s chart("name",3)="metric 3"
 s chart("name",4)="metric 4"
 s chart("name",5)="metric 5"
 s chart("data2",1)=12
 s chart("data2",2)=8
 s chart("data2",3)=2
 s chart("data2",4)=14
 s chart("data2",5)=4
 f i=1:1:5 s chart("data3",i)=$r(20)
 f i=1:1:5 s chart("data4",i)=$r(20)
 f i=1:1:5 s chart("data5",i)=$r(20)
 d mergeArrayToSession^%zewdAPI(.chart,"myChart",sessid)
 QUIT ""

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 108

When you run the Container Page, it should render as follows:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 109

Drawing

The <ext4:draw> and <ext4:sprite> Tags
ExtJS v4 includes a drawing capability. This underpins the Charts functionality, but is available in its own right for situations
where you want to take control and perform your own custom graphical work.

It is recommended that you consult the ExtJS documentation and tutorials if you want to use the Draw components, but
EWD exposes the two key components as tags that you can use within your applications:

- <ext4:draw> maps to the Ext.draw.Component class

- <ext4:sprite> maps to the Ext.draw.Sprite class.

Here’s a simple example:

<ext4:container rootPath="/ext-4">

 <ext4:window width="215" height="235" autoShow="true" layout="fit">
 <ext4:draw viewBox="false">
 <ext4:sprite type="circle" fill="##79bb3f" radius="100" x="100" y="100" />
 </ext4:draw>
 </ext4:window>

</ext4:container>

This renders as follows:

Here’s a more complex example showing a variety of ways of dynamically adding sprites to the drawing surface:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 110

<ext4:container rootPath="/ext-4">

 <script type="text/javascript">
 setTimeout(function() {
 var circle2 = Ext.getCmp("myDrawing").surface.add({
 type: "circle",
 fill: "#0ef",
 radius: 150,
 x: 300,
 y: 300
 });
 circle2.show(true);
 },3000);

 setTimeout(function() {
 var surface = Ext.getCmp("myDrawing").surface;
 var s3 = surface.add(circle3);
 s3.show(true);
 },6000);

 </script>

 <ext4:window title="My Circles" width="500" height="500" autoShow="true" layout="fit">
 <ext4:draw id="myDrawing" viewBox="false">
 <ext4:sprite type="circle" id="myCircle" fill="##79bb3f" radius="100" x="100" y="100" />
 </ext4:draw>
 </ext4:window>

 <ext4:sprite type="circle" fill="##b00" radius="50" x="400" y="100" object="circle3" var="false" />

</ext4:container>

Try it out and see what happens!

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 111

Appendix 1: Instal l ing EWD

Installing EWD

GT.M
The quickest and simplest way to use EWD and GT.M is to download and use the dEWDrop Virtual
Machine (http://www.fourthwatchsoftware.com) which is pre-configured with the latest build of EWD.
However, if you wish to build your own system, you can get the latest EWD routine files from https://
github.com/robtweed/EWD. See our website (http://www.mgateway.com/ewd.html) for details on
installing EWD on GT.M systems.

Caché
You should download a copy of the latest version of EWD from our web site (http://
www.mgateway.com):

• Click the Enterprise Web Developer tab
• Click the tabs Download EWD followed by EWD for Caché.
• Complete the registration form and you’ll be able to download the latest copy of EWD for free. The

Sencha Touch custom tags are included in EWD.

The zip file that you'll download contains one critical file:

• zewd.xml - the object code file that you install into your %SYS namespace using
$system.OBJ.Load(). Let this overwrite any existing copy of ^%zewd* routines if you already have
EWD on your Caché system

Configuring EWD

EWD can generate CSP, WebLink and GT.M versions of Mobile web applications from the same EWD
application source code. If you're already using EWD, then you can immediately start developing
EWD applications.

If you're new to EWD, then you'll need to configure EWD for either WebLink, CSP or GT.M, depending
on which technology you use. There are configuration instructions on our web site, but here's a quick
way of configuring them, based on certain assumptions - just change the references according to
your exact GT.M or Caché/WebLink/CSP configuration.

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 112

https://github.com/robtweed/EWD
https://github.com/robtweed/EWD
https://github.com/robtweed/EWD
https://github.com/robtweed/EWD
http://www.mgateway.com
http://www.mgateway.com
http://www.mgateway.com
http://www.mgateway.com
http://www.mgateway.com
http://www.mgateway.com

Caché & CSP

1a) Simple Default Configuration
If you are using a default Caché installation and want to initially use the built-in Apache web server
that is configured to use port 57772, you can just run (in a Caché Terminal session):

 do configureDefault^%zewdCSP

This sets up the configuration global ^zewd for you.

1b) Custom Configuration
However, if you have configured IIS or some other web server for use with CSP, you’ll need to
manually configure EWD as appropriate to your specific configuration. This is done via the global
^zewd. Here’s an example of how to do this:

Assumptions:

• you'll be running your EWD-generated CSP applications in your USER namespace
• you're using IIS as your web server and its root path is c:\inetpub\wwwroot
• your source EWD applications will reside under the path c:\ewdapps
• the CSP application directories and files generated by EWD will be saved under

c:\InterSystems\Caché\CSP\ewd

Create a global named ^zewd as follows (adjust as necessary):

^zewd("config","RootURL","csp")="/csp/ewd"
^zewd("config","applicationRootPath")="c:\ewdapps"
^zewd("config","outputRootPath","csp")="c:\InterSystems\Cache\CSP\ewd"
^zewd("config","jsScriptPath","csp","mode")="fixed"
^zewd("config","jsScriptPath","csp","path")="/"
^zewd("config","jsScriptPath","csp","outputPath")="c:\Inetpub\wwwroot"

2) Define CSP Application
Next, you must create a CSP Application named "/csp/ewd" that points to the outputRootPath above
and directs you to the required namespace (USER). To so this, use the Caché System Management
Portal, select Security Management/ CSP Applications, then click the Create New CSP Application
link.

 Fill out the form as shown below to get you started:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 113

The settings shown above are for a simple default CSP system using the built-in web server. If you
have a customized CSP configuration, you may need to make some adjustments, in particular to the
CSP Files Physical Path.

EWD should now be ready to use with CSP.

Caché & WebLink
Assumptions:

• you'll be running your EWD applications in your USER namespace
• you're using IIS as your web server and its root path is c:\inetpub\wwwroot
• your source EWD applications will reside under the path c:\ewdapps
• you'll be using the WebLink Server (MGWLPN) LOCAL which, by default, connects incoming

requests to the USER namespace

Create a global named ^zewd in the USER namespace as follows (adjust as necessary):

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 114

^zewd("config","RootURL","wl")="/scripts/mgwms32.dll"
^zewd("config","applicationRootPath")="/usr/ewdApps"
^zewd("config","jsScriptPath","wl")="fixed"
^zewd("config","jsScriptPath","wl","mode")="fixed"
^zewd("config","jsScriptPath","wl","outputPath")="c:\Inetpub\wwwroot"
^zewd("config","jsScriptPath","wl","path")="/"

You also must create the global (again in USER):

^MGWAPP("ewdwl")="runPage^%zewdWLD"

This latter global creates the WebLink dispatcher to EWD's WebLink run-time engine.

GT.M
Examples assume that you are running a GT.M and EWD configuration, defined as per the dEWDrop
Virtual machine:

• you'll be in the /home/vista/ path when you start the GT.M shell using mumps -dir
• you're using Apache as your web server and its root path is /home/vista/www
• your source EWD applications will reside under the path /home/vista/www/ewd
• m_apache has been installed and configured to dispatch to EWD’s runtime code when URLs are

encountered containing /vista
• Javascript and CSS files that are generated by EWD will be saved under the webserver

path /vista/resources

Create a global named ^zewd as follows (adjust as necessary):

^zewd("config","RootURL","gtm")="/vista/"
^zewd("config","applicationRootPath")="/home/vista/www/ewd"
^zewd("config","jsScriptPath","gtm","mode")="fixed"
^zewd("config","jsScriptPath","gtm","outputPath")="/home/vista/www/resources/"
^zewd("config","jsScriptPath","gtm","path")="/vista/resources/"
^zewd("config","routinePath","gtm")="/home/vista/www/r/"

Creating EWD Pages
This tutorial will guide you through the process, but here’s a quick summary of the process involved,
based on the configuration settings shown above.

Having configured your EWD environment, you should now be ready to start developing. Create your
new EWD application source pages in subdirectories of the Application Root Path, eg if your
Application Root Path is c:\ewdapps and your application is named myApp::

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 115

c:\ewdapps\myApp\index.ewd

c:\ewdapps\myApp\login.ewd

You can use any text editor to create and edit these files.

To create an executable web application from these pages, you must compile them. This is most
easily done using the command-line APIs that you invoke from within Caché Terminal or, if you are
using GT.M, from within a Linux terminal session running the GT.M shell.

To compile an entire application (eg one named myApp):

CSP:
USER> d compileAll^%zewdAPI("myApp",,"csp")

WebLink:
USER> d compileAll^%zewdAPI("myApp",,"wl")

GT.M:
USER> d compileAll^%zewdAPI("myApp")

To compile one page (eg myPage.ewd) in an application (eg myApp):

CSP:
USER> d compilePage^%zewdAPI("myApp","myPage",,"csp")

WebLink:
USER> d compilePage^%zewdAPI("myApp","myPage",,"wl")

GT.M:
USER> d compilePage^%zewdAPI("myApp","myPage")

Running EWD Applications
You’ll now have a runnable Web Application that will run in a desktop browser. The structure of the
URL you’ll use to invoke and start the application depends on whether you’re using GT.M, WebLink or
CSP:

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 116

CSP

For CSP EWD applications, the structure of the URL you’ll use is:

	 http://127.0.0.1/csp/ewd/[applicationName]/[pageName].csp

	 where: 	 applicationName is the name of your EWD application

 	 	 	 pageName is the name of the first page of your EWD application

	 for example:

	 http://127.0.0.1/csp/ewd/myApp/index.csp

WebLink

For WebLink EWD applications, the structure of the URL you’ll use is:

http://127.0.0.1/scripts/mgwms32.dll?
MGWLPN=LOCAL&MGWAPP=ewdwl&app=[applicationName]&page=[pageName]

where 	 	 applicationName is the name of your EWD application

 	 	 pageName is the name of the first page of your EWD application

for example:

http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=myApp&page=index

If you’re using Apache, you’ll typically replace /scripts/mgwms32.dll with cgi-bin/nph-mgwcgi

Of course if you’re using a WebLink Server other than LOCAL, you’ll also need to change the value of
the MGWLPN name/value pair.

GT.M

For GT.M EWD applications, the structure of the URL you’ll use is:

	 http://127.0.0.1/vista/[applicationName]/[pageName].ewd

	 where 	 applicationName is the name of your EWD application

 	 	 pageName is the name of the first page of your EWD application

for example:

	 http://127.0.0.1/vista/myApp/index.ewd

Copyright ©2012, M/Gateway Developments Ltd. All Rights Reserved

EWD ExtJS v4 Custom Tag Guide (Build 918)

 117

http://127.0.0.1/csp/ewd/%5BapplicationName%5D/%5BpageName%5D.csp
http://127.0.0.1/csp/ewd/%5BapplicationName%5D/%5BpageName%5D.csp
http://127.0.0.1/csp/ewd/myApp/index.csp
http://127.0.0.1/csp/ewd/myApp/index.csp
http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=%5BapplicationName%5D&page=%5BpageName%5D
http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=%5BapplicationName%5D&page=%5BpageName%5D
http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=%5BapplicationName%5D&page=%5BpageName%5D
http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=%5BapplicationName%5D&page=%5BpageName%5D
http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=myApp&page=index
http://127.0.0.1/scripts/mgwms32.dll?MGWLPN=LOCAL&MGWAPP=ewdwl&app=myApp&page=index
http://127.0.0.1/ewd/%5BapplicationName%5D/%5BpageName%5D.ewd
http://127.0.0.1/ewd/%5BapplicationName%5D/%5BpageName%5D.ewd
http://127.0.0.1/ewd/myApp/index.ewd
http://127.0.0.1/ewd/myApp/index.ewd

